Deep-blue LEDs get a super-bright, non-toxic boost
A team led by researchers at Rutgers University in the US has discovered a new semiconductor that emits bright, deep-blue light. The hybrid copper iodide material is stable, non-toxic, can be processed in solution and has already been integrated into a light-emitting diode (LED). According to its developers, it could find applications in solid-state lighting and display technologies.
Creating white light for solid-state lighting and full-colour displays requires bright, pure sources of red, green and blue light. While stable materials that efficiently emit red or green light are relatively easily to produce, those that generate blue light (especially deep-blue light) are much more challenging. Existing blue-light emitters based on organic materials are unstable, meaning they lose their colour quality over time. Alternatives based on lead-halide perovskites or cadmium-containing colloidal quantum dots are more stable, but also toxic for humans and the environment.
Hybrid copper-halide-based emitters promise the best of both worlds, being both non-toxic and stable. They are also inexpensive, with tuneable optical properties and a high luminescence efficiency, meaning they are good at converting power into visible light.
Researchers have already used a pure inorganic copper iodide material, Cs3Cu2I5, to make deep-blue LEDs. This material emits light at the ideal wavelength of 445 nm, is robust to heat and moisture, and it emits between 87–95% of the excitation photons it absorbs as luminescence photons, giving it a high photoluminescence quantum yield (PLQY).
However, the maximum ratio of photon output to electron input (known as the maximum external quantum efficiency, EQEmax) for this material is very low, at just 1.02%.
Strong deep-blue photoluminescence
In the new work, a team led by Rutgers materials chemist Jing Li developed a hybrid copper iodide with the chemical formula 1D-Cu4I8(Hdabco)4 (CuI(Hda), where Hdabco is 1,4-diazabicyclo-[2.2.2]octane-1-ium. This material emits strong deep-blue light at 449 nm with a PLQY near unity (99.6%).
Li and colleagues opted to use CuI(Hda) as the sole light emitting layer and built a thin-film LED out of it using a solution process. The new device has an EQEmax of 12.6% with colour coordinates (0.147, 0.087) and a peak brightness of around 4000 cd m-2. It is also relatively stable, with an operational half-lifetime (T50) of approximately 204 hours under ambient conditions. These figures mean that its performance rivals the best existing solution-processed deep-blue LEDs, Li says. The team also fabricated a large-area device measuring 4 cm² to demonstrate that the material could be used in real-world applications.
Interfacial hydrogen-bond passivation strategy
The low PLQY of previous such devices is partly due to the fact that charge carriers (electrons and holes) in these materials rapidly recombine in a non-radiative way, typically due to surface and bulk defects, or traps. The charge carriers also have a low radiative recombination rate, which is associated with a small exciton (electron-hole pair) binding energy.
Li and colleagues overcame this problem in their new device thanks to an interfacial hydrogen-bond passivation (DIHP) strategy that involves introducing hydrogen bonds via an ultrathin sheet of polymethylacrylate (PMMA) and a carbazole-phosphonic acid-based self-assembled monolayer (Ac2PACz) at the two interfaces of the CuI(Hda) emissive layer. This effectively passivates both heterojunctions of the copper-iodide hydride light-emitting layer and optimizes exciton binding energies. “Such a synergistic surface modification dramatically boosts the performance of the deep-blue LED by a factor of fourfold,” explains Li.
According to Li, the study suggests a promising route for developing blue emitters that are both energy-efficient and environmentally benign, without compromising on performance. “Through the fabrication of blue LEDs using a low cost, stable and nontoxic material capable of delivering efficient deep-blue light, we address major energy and ecological limitations found in other types of solution-processable emitters,” she tells Physics World.
Li adds that the hydrogen-bonding passivation technique is not limited to the material studied in this work. It could also be applied to minimize interfacial energy losses in a wide range of other solution-based, light-emitting optoelectronic systems.
The team is now pursuing strategies for developing other solution-processable, high-performance hybrid copper iodide-based emitter materials similar to CuI(Hda). “Our goal is to further enhance the efficiency and extend the operational lifetime of LEDs utilizing these next-generation materials,” says Li.
The present work is detailed in Nature.
The post Deep-blue LEDs get a super-bright, non-toxic boost appeared first on Physics World.