Physicists overcome ‘acoustic collapse’ to levitate multiple objects with sound
Sound waves can make small objects hover in the air, but applying this acoustic levitation technique to an array of objects is difficult because the objects tend to clump together. Physicists at the Institute of Science and Technology Austria (ISTA) have now overcome this problem thanks to hybrid structures that emerge from the interplay between attractive acoustic forces and repulsive electrostatic ones. By proving that it is possible to levitate many particles while keeping them separated, the finding could pave the way for advances in acoustic-levitation-assisted 3D printing, mid-air chemical synthesis and micro-robotics.
In acoustic levitation, particles ranging in size from tens of microns to millimetres are drawn up into the air and confined by an acoustic force. The origins of this force lie in the momentum that the applied acoustic field transfers to a particle as sound waves scatter off its surface. While the technique works well for single particles, multiple particles tend to aggregate into a single dense object in mid-air because the acoustic forces they scatter can, collectively, create an attractive interaction between them.
Keeping particles separated
Led by Scott Waitukaitis, the ISTA researchers found a way to avoid this so-called “acoustic collapse” by using a tuneable repulsive electrostatic force to counteract the attractive acoustic one. They began by levitating a single silver-coated poly(methyl methacrylate) (PMMA) microsphere 250‒300 µm in diameter above a reflector plate coated with a transparent and conductive layer of indium tin oxide (ITO). They then imbued the particle with a precisely controlled amount of electrical charge by letting it rest on the ITO plate with the acoustic field off, but with a high-voltage DC potential applied between the plate and a transducer. This produces a capacitive build-up of charge on the particle, and the amount of charge can be estimated from Maxwell’s solutions for two contacting conductive spheres (assuming, in the calculations, that the lower plate acts like a sphere with infinite radius).
The next step in the process is to switch on the acoustic field and, after just 10 ms, add the electric field to it. During the short period in which both fields are on, and provided the electric field is strong enough, either field is capable of launching the particle towards the centre of the levitation setup. The electric fields is then switched off. A few seconds later, the particle levitates stably in the trap, with a charge given, in principle, by Maxwell’s approximations.
A visually mesmerizing dance of particles
This charging method works equally well for multiple particles, allowing the researchers to load particles into the trap with high efficiency and virtually any charge they want, limited only by the breakdown voltage of the surrounding air. Indeed, the physicists found they could tune the charge to levitate particles separately or collapse them into a single, dense object. They could even create hybrid states that mix separated and collapsed particles.
And that wasn’t all. According to team member Sue Shi, a PhD student at ISTA and the lead author of a paper in PNAS about the research, the most exciting moment came when they saw the compact parts of the hybrid structures spontaneously begin to rotate, while the expanded parts remained in one place while oscillating in response to the rotation. The result was “a visually mesmerizing dance,” Shi says, adding that “this is the first time that such acoustically and electrostatically coupled interactions have been observed in an acoustically levitated system.”
As well as having applications in areas such as materials science and micro-robotics, Shi says the technique developed in this work could be used to study non-reciprocal effects that lead to the particles rotating or oscillating. “This would pave the way for understanding more elusive and complex non-reciprocal forces and many-body interactions that likely influence the behaviours of our system,” Shi tells Physics World.
The post Physicists overcome ‘acoustic collapse’ to levitate multiple objects with sound appeared first on Physics World.
