↩ Accueil

Vue normale

Reçu aujourd’hui — 2 janvier 2026 6.5 📰 Sciences English

The environmental and climate cost of war

2 janvier 2026 à 12:00

Despite not being close to the frontline of Russia’s military assault on Ukraine, life at the Ivano-Frankivsk National Technical University of Oil and Gas is far from peaceful. “While we continue teaching and research, we operate under constant uncertainty – air raid alerts, electricity outages – and the emotional toll on staff and students,” says Lidiia Davybida, an associate professor of geodesy and land management.

Last year, the university became a target of a Russian missile strike, causing extensive damage to buildings that still has not been fully repaired – although, fortunately, no casualties were reported. The university also continues to leak staff and students to the war effort – some of whom will tragically never return – while new student numbers dwindle as many school graduates leave Ukraine to study abroad.

Despite these major challenges, Davybida and her colleagues remain resolute. “We adapt – moving lectures online when needed, adjusting schedules, and finding ways to keep research going despite limited opportunities and reduced funding,” she says.

Resolute research

Davybida’s research focuses on environmental monitoring using geographic information systems (GIS), geospatial analysis and remote sensing. She has been using these techniques to monitor the devastating impact that the war is having on the environment and its significant contribution to climate change.

In 2023 she published results from using Sentinel-5P satellite data and Google Earth Engine to monitor the air quality impacts of war on Ukraine (IOP Conf. Ser.: Earth Environ. Sci. 1254 012112). As with the COVID-19 lockdowns worldwide, her results reveal that levels of common pollutants such as carbon monoxide, nitrogen dioxide and sulphur dioxide were, on average, down from pre-invasion levels. This reflects the temporary disruption to economic activity that war has brought on the country.

Rescue workers lift an elder person on a stretcher out of flood water
Wider consequences Ukrainian military, emergency services and volunteers work together to rescue people from a large flooded area in Kherson on 8 June 2023. Two days earlier, the Russian army blew up the dam of the Kakhovka hydroelectric power station, meaning about 80 settlements in the flood zone had to be evacuated. (Courtesy: Sergei Chuzavkov/SOPPA Images/Shutterstock)

More worrying, from an environment and climate perspective, were the huge concentrations of aerosols, smoke and dust in the atmosphere. “High ozone concentrations damage sensitive vegetation and crops,” Davybida explains. “Aerosols generated by explosions and fires may carry harmful substances such as heavy metals and toxic chemicals, further increasing environmental contamination.” She adds that these pollutants can alter sunlight absorption and scattering, potentially disrupting local climate and weather patterns, and contributing to long-term ecological imbalances.

A significant toll has been wrought by individual military events too. A prime example is Russia’s destruction of the Kakhovka Dam in southern Ukraine in June 2023. An international team – including Ukrainian researchers – recently attempted to quantify this damage by combining on-the-ground field surveys, remote-sensing data and hydrodynamic modelling; a tool they used for predicting water flow and pollutant dispersion.

The results of this work are sobering (Science 387 1181). Though 80% of the ecosystem is expected to re-establish itself within five years, the dam’s destruction released as much as 1.7 cubic kilometres of sediment contaminated by a host of persistent pollutants, including nitrogen, phosphorous and 83,000 tonnes of heavy metals. Discharging this toxic sludge across the land and waterways will have unknown long-term environmental consequences for the region, as the contaminants could be spread by future floods, the researchers concluded (figure 1).

1 Dam destruction

Map of Ukraine with a large area of coastline highlighted in orange and smaller inland areas highlighted green
(Reused with permission from Science 387 1181 10.1126/science.adn8655)

This map shows areas of Ukraine affected or threatened by dam destruction in military operations. Arabic numbers 1 to 6 indicate rivers: Irpen, Oskil, Inhulets, Dnipro, Dnipro-Bug Estuary and Dniester, respectively. Roman numbers I to VII indicate large reservoir facilities: Kyiv, Kaniv, Kremenchuk, Kaminske, Dnipro, Kakhovka and Dniester, respectively. Letters A to C indicate nuclear power plants: Chornobyl, Zaporizhzhia and South Ukraine, respectively.

Dangerous data

A large part of the reason for the researchers’ uncertainty, and indeed more general uncertainty in environmental and climate impacts of war, stems from data scarcity. It is near-impossible for scientists to enter an active warzone to collect samples and conduct surveys and experiments. Environmental monitoring stations also get damaged and destroyed during conflict, explains Davybida – a wrong she is attempting to right in her current work. Many efforts to monitor, measure and hopefully mitigate the environmental and climate impact of the war in Ukraine are therefore less direct.

In 2022, for example, climate-policy researcher Mathijs Harmsen from the PBL Netherlands Environmental Assessment Agency and international collaborators decided to study the global energy crisis (which was sparked by Russia’s invasion of Ukraine) to look at how the war will alter climate policy (Environ. Res. Lett. 19 124088).

They did this by plugging in the most recent energy price, trade and policy data (up to May 2023) into an integrated assessment model that simulates the environmental consequences of human activities worldwide. They then imposed different potential scenarios and outcomes and let it run to 2030 and 2050. Surprisingly, all scenarios led to a global reduction of 1–5% of carbon dioxide emissions by 2030, largely due to trade barriers increasing fossil fuel prices, which in turn would lead to increased uptake of renewables.

But even though the sophisticated model represents the global energy system in detail, some factors are hard to incorporate and some actions can transform the picture completely, argues Harmsen. “Despite our results, I think the net effect of this whole war is a negative one, because it doesn’t really build trust or add to any global collaboration, which is what we need to move to a more renewable world,” he says. “Also, the recent intensification of Ukraine’s ‘kinetic sanctions’ [attacks on refineries and other fossil fuel infrastructure] will likely have a larger effect than anything we explored in our paper.”

Elsewhere, Toru Kobayakawa was, until recently, working for the Japan International Cooperation Agency (JICA), leading the Ukraine support team. Kobayakawa used a non-standard method to more realistically estimate the carbon footprint of reconstructing Ukraine when the war ends (Environ. Res.: Infrastruct. Sustain. 5 015015). The Intergovernmental Panel on Climate Change (IPCC) and other international bodies only account for carbon emissions within the territorial country. “The consumption-based model I use accounts for the concealed carbon dioxide from the production of construction materials like concrete and steel imported from outside of the country,” he says.

Using an open-source database Eora26 that tracks financial flows between countries’ major economic sectors in simple input–output tables, Kobayakawa calculated that Ukraine’s post-war reconstruction will amount to 741 million tonnes carbon dioxide equivalent over 10 years. This is 4.1 times Ukraine’s pre-war annual carbon-dioxide emissions, or the combined annual emissions of Germany and Austria.

However, as with most war-related findings, these figures come with a caveat. “Our input–output model doesn’t take into account the current situation,” notes Kobayakawa “It is the worst-case scenario.” Nevertheless, the research has provided useful insights, such as that the Ukrainian construction industry will account for 77% of total emissions.

“Their construction industry is notorious for inefficiency, needing frequent rework, which incurs additional costs, as well as additional carbon-dioxide emissions,” he says. “So, if they can improve efficiency by modernizing construction processes and implementing large-scale recycling of construction materials, that will contribute to reducing emissions during the reconstruction phase and ensure that they build back better.”

Military emissions gap

As the experiences of Davybida, Harmsen and Kobayakawa show, cobbling together relevant and reliable data in the midst of war is a significant challenge, from which only limited conclusions can be drawn. Researchers and policymakers need a fuller view of the environmental and climate cost of war if they are to improve matters once a conflict ends.

That’s certainly the view of Benjamin Neimark, who studies geopolitical ecology at Queen Mary University of London. He has been trying for some time to tackle the fact that the biggest data gap preventing accurate estimates of the climate and environmental cost of war is military emissions. During the 2021 United Nations Climate Change Conference (COP26), for example, he and colleagues partnered with the Conflict and Environment Observatory (CEOBS) to launch The Military Emissions Gap, a website to track and trace what a country accounts for as its military emissions to the United Nations Framework Convention on Climate Change (UNFCCC).

At present, reporting military emissions is voluntary, so data are often absent or incomplete – but gathering such data is vital. According to a 2022 estimate extrapolated from the small number of nations that do share their data, the total military carbon footprint is approximately 5.5% of global emissions. This would make the world’s militaries the fourth biggest carbon emitter if they were a nation.

The website is an attempt to fill this gap. “We hope that the UNFCCC picks up on this and mandates transparent and visible reporting of military emissions,” Neimark says (figure 2).

2 Closing the data gap

Five sets of icons indicating categories of military and conflict-related carbon emissions
(Reused with permission from Neimark et al. 2025 War on the Climate: A Multitemporal Study of Greenhouse Gas Emissions of the Israel–Gaza Conflict. Available at SSRN)

Current United Nations Framework Convention on Climate Change (UNFCCC) greenhouse-gas emissions reporting obligations do not include all the possible types of conflict emissions, and there is no commonly agreed methodology or scope on how different countries collect emissions data. In a recent publication War on the Climate: a Multitemporal Study of Greenhouse Gas Emissions of the Israel-Gaza Conflict, Benjamin Neimark et al. came up with this framework, using the UNFCCC’s existing protocols. These reporting categories cover militaries and armed conflicts, and hope to highlight previously “hidden” emissions.

Measuring the destruction

Beyond plugging the military emissions gap, Neimark is also involved in developing and testing methods that he and other researchers can use to estimate the overall climate impact of war. Building on foundational work from his collaborator, Dutch climate specialist Lennard de Klerk – who developed a methodology for identifying, classifying and providing ways of estimating the various sources of emissions associated with the Russia–Ukraine war – Neimark and colleagues are trying to estimate the greenhouse-gas emissions from the Israel–Gaza conflict.

Their studies encompass pre-conflict preparation, the conflict itself and post-conflict reconstruction. “We were working with colleagues who were doing similar work in Ukraine, but every war is different,” says Neimark. “In Ukraine, they don’t have large tunnel networks, or they didn’t, and they don’t have this intensive, incessant onslaught of air strikes from carbon-intensive F16 fighter aircraft.” Some of these factors, like the carbon impact of Hamas’ underground maze of tunnels under Gaza, seem unquantifiable, but Neimark has found a way.

“There’s some pretty good data for how big these are in terms of height, the amount of concrete, how far down they’re dug and how thick they are,” says Neimark. “It’s just the length we had to work out based on reported documentation.” Finding the total amount of concrete and steel used in these tunnels involved triangulating open-source information with media reports to finalize an estimate of the dimensions of these structures. Standard emission factors could then be applied to obtain the total carbon emissions. According to data from Neimark’s Confronting Military Greenhouse Gas Emissions report, the carbon emissions from construction of concrete infrastructure by both Israel and Hamas were more than the annual emissions of 33 individual countries and territories (figure 3).

3 Climate change and the Gaza war

Three lists of headline facts and figures about carbon emissions from the Israel-Gaza war, split into direct military actions, large war-related infrastructure, and future rebuilding)
(Reused with permission from Neimark et al. 2024 Confronting Military Greenhouse Gas Emissions, Interactive Policy Brief, London, UK. Available from QMUL.)

Data from Benjamin Neimark, Patrick Bigger, Frederick Otu-Larbi and Reuben Larbi’s Confronting Military Greenhouse Gas Emissions report estimates the carbon emissions of the war in Gaza for three distinct periods: direct war activities; large-scale war infrastructure; and future reconstruction.

The impact of Hamas’ tunnels and Israel’s “iron wall” border fence are just two of many pre-war activities that must be factored in to estimate the Israel–Gaza conflict’s climate impact. Then, the huge carbon cost of the conflict itself must be calculated, including, for example, bombing raids, reconnaissance flights, tanks and other vehicles, cargo flights and munitions production.

Gaza’s eventual reconstruction must also be included, which makes up a big proportion of the total impact of the war, as Kobayakawa’s Ukraine reconstruction calculations showed. The United Nations Environment Programme (UNEP) has been systematically studying and reporting on “Sustainable debris management in Gaza” as it tracks debris from damaged buildings and infrastructure in Gaza since the outbreak of the conflict in October 2023. Alongside estimating the amounts of debris, UNEP also models different management scenarios – ranging from disposal to recycling – to evaluate the time, resource needs and environmental impacts of each option.

Visa restrictions and the security situation have prevented UNEP staff from entering the Gaza strip to undertake environmental field assessments to date. “While remote sensing can provide a valuable overview of the situation … findings should be verified on the ground for greater accuracy, particularly for designing and implementing remedial interventions,” says a UNEP spokesperson. They add that when it comes to the issue of contamination, UNEP needs “confirmation through field sampling and laboratory analysis” and that UNEP “intends to undertake such field assessments once conditions allow”.

The main risk from hazardous debris – which is likely to make up about 10–20% of the total debris – arises when it is mixed with and contaminates the rest of the debris stock. “This underlines the importance of preventing such mixing and ensuring debris is systematically sorted at source,” adds the UNEP spokesperson.

The ultimate cost

With all these estimates, and adopting a Monte Carlo analysis to account for uncertainties, Neimark and colleagues concluded that, from the first 15 months of the Israel–Gaza conflict, total carbon emissions were 32 million tonnes, which is huge given that the territory has a total area of just 365 km². The number also continues to rise.

Khan Younis in ruins
Rubble and ruins Khan Younis in the Gaza Strip on 11 February 2025, showing the widespread damage to buildings and infrastructure. (Courtesy: Shutterstock/Anas Mohammed)

Why does this number matter? When lives are being lost in Gaza, Ukraine, and across Sudan, Myanmar and other regions of the world, calculating the environmental and climate cost of war might seem like something only worth bothering about when the fighting stops.

But doing so even while conflicts are taking place can help protect important infrastructure and land, avoid environmentally disastrous events, and to ensure the long rebuild, wherever the conflict may be happening, is informed by science. The UNEP spokesperson says that it is important to “systematically integrate environmental considerations into humanitarian and early recovery planning from the outset” rather than treating the environment as an afterthought. They highlight that governments should “embed it within response plans – particularly in areas where it can directly impact life-saving activities, such as debris clearance and management”.

With Ukraine still in the midst of war, it seems right to leave the final word to Davybida. “Armed conflicts cause profound and often overlooked environmental damage that persists long after the fighting stops,” she says. “Recognizing and monitoring these impacts is vital to guide practical recovery efforts, protect public health, prevent irreversible harm to ecosystems and ensure a sustainable future.”

The post The environmental and climate cost of war appeared first on Physics World.

Reçu hier — 1 janvier 2026 6.5 📰 Sciences English

Happy new year: what’s happening in physics in 2026?

1 janvier 2026 à 01:15

I used to set myself the challenge every December of predicting what might happen in physics over the following year. Gazing into my imaginary crystal ball, I tried to speculate on the potential discoveries, the likely trends, and the people who might make the news over the coming year. It soon dawned on me that making predictions in physics is a difficult, if not futile, task

Apart from space missions pencilled in for launch on set dates, or particle colliders or light sources due to open, so much in science is simply unknown. That uncertainty of science is, of course, also its beauty; if you knew what was out there, looking for it wouldn’t be quite as much fun. So if you’re wondering what’s in store for 2026, I don’t know – you’ll just have to read Physics World to find out.

Having said that – and setting aside the insane upheaval going on in US science – this year’s Physics World Live series will give you some sense of what’s hot in physics right now, at least as far as we here at Physics World headquarters are concerned.

The first online panel discussion will be on quantum metrology – a burgeoning field that seeks to ensure companies and academics can test, validate and commercialize new quantum tech. Yes the International Year of Quantum Science and Technology officially ends with a closing ceremony in Ghana in February, but the impact of quantum physics will continue to reverberate throughout 2026.

You can also look forward to an online event on nuclear fusion, which offers a path to limitless energy and a potential solution to the climate crisis. But it’s a complex challenge and the route to commercialization is uncertain, despite lots of private firms being active in the area as a counterweight to the huge ITER experiment that’s being built in southern France. Among them is Tokamak Energy, which this year won a Business Award from the Institute of Physics (IOP).

Another of our online panels will be on medical physics, bringing together the current and two past editors-in-chief of Physics in Medicine & Biology. Published by IOP Publishing on behalf of the Institute of Physics and Engineering in Medicine, the journal turns 70 this year. The speakers will be reflecting on the vital role of medical-physics research to medicine and biology and examining how the field’s evolved since the journal was set up.

Medical physics will also be the focus of a new “impact project” in 2026 from the IOP, which will be starting another on artificial intelligence (AI) as well. The IOP will in addition be continuing its existing impact work on metamaterials, which were of course pioneered by – among others – the Imperial College theorist John Pendry. I wonder if a Nobel prize could be in store for him this year? That’s one prediction I’ll make that would be great if it came true.

Until then, on behalf of everyone at Physics World, I wish all readers – wherever you are – a happy and successful 2026. Your continued support is greatly valued.

The post Happy new year: what’s happening in physics in 2026? appeared first on Physics World.

Reçu — 31 décembre 2025 6.5 📰 Sciences English

The quirkiest stories from the world of physics in 2025

31 décembre 2025 à 11:00

From cutting onions to a LEGO Jodrell Bank, physics has had its fair share of quirky stories this year. Here is our pick of the best, not in any particular order.

Flight of the nematode

Researchers in the US this year discovered that a tiny jumping worm uses static electricity to increase its chances of attaching to unsuspecting prey. The parasitic roundworm Steinernema carpocapsae can leap some 25 times its body length by curling into a loop and springing in the air. If the nematode lands successfully on a victim, it releases bacteria that kills the insect within a couple of days upon which  the worm feasts and lays its eggs. To investigate whether static electricity aids their flight, a team at Emory University and the University of California, Berkeley, used high-speed microscopy to film the worms as they leapt onto a fruit fly that was tethered with a copper wire connected to a high-voltage power supply. The researchers found that a charge of a  few hundred volts – similar to that generated in the wild by an insect’s wings rubbing against ions in the air – fosters a negative charge on the worm, creating an attractive force with the positively charged fly. They discovered that without any electrostatics, only 1 in 19 worm trajectories successfully reached their target. The greater the voltage, however, the greater the chance of landing with 880 V resulting in an 80% probability of success. “We’re helping to pioneer the emerging field of electrostatic ecology,” notes Emory physicist Ranjiangshang Ran.

Tear-jerking result

While it is known that volatile chemicals released from onions irritate the nerves in the cornea to produce tears, how such chemical-laden droplets reach the eyes and whether they are influenced by the knife or cutting technique remain less clear. To investigate, Sunghwan Jung  from Cornell University and colleagues built a guillotine-like apparatus and used high-speed video to observe the droplets released from onions as they were cut by steel blades. They found that droplets, which can reach up to 60 cm high, were released in two stages – the first being a fast mist-like outburst that was followed by threads of liquid fragmenting into many droplets. The most energetic droplets were released during the initial contact between the blade and the onion’s skin. When they began varying the sharpness of the blade and the cutting speed, they discovered that a greater number of droplets were released by blunter blades and faster cutting speeds. “That was even more surprising,” notes Jung. “Blunter blades and faster cuts – up to 40 m/s – produced significantly more droplets with higher kinetic energy.” Another surprise was that refrigerating the onions prior to cutting also produced an increased number of droplets of similar velocity, compared to room-temperature vegetables.

LEGO telescope

Students at the University of Manchester in the UK created a 30 500-piece LEGO model of the iconic Lovell Telescope to mark the 80th anniversary of the Jodrell Bank Observatory, which was founded in December 1945. Built in 1957, the 76.2 m diameter telescope was the largest steerable dish radio telescope in the world at the time. The LEGO model has been designed by Manchester’s undergraduate physics society and is based on the telescope’s original engineering blueprints. Student James Ruxton spent six months perfecting the design, which even involved producing custom-designed LEGO bricks with a 3D printer. Ruxton and fellow students began construction in April and the end result is a model weighing 30 kg with 30500 pieces and a whopping 4000-page instruction manual. “It’s definitely the biggest and most challenging build I’ve ever done, but also the most fun,” says Ruxton. “I’ve been a big fan of LEGO since I was younger, and I’ve always loved creating my own models, so recreating something as iconic as the Lovell is like taking that to the next level!” The model has gone on display in a “specially modified cabinet” at the university’s Schuster building, taking pride of place alongside a decade-old LEGO model of CERN’s ATLAS detector.

Petal physics

The curves and curls of leaves and flower petals arise due to the interplay between their natural growth and geometry. Uneven growth in a flat sheet, in which the edges grow quicker than the interior, gives rise to strain and in plant leaves and petals, for example, this can result in a variety of shapes such as saddle and ripple shapes. Yet when it comes to rose petals, the sharply pointed cusps – a point where two curves meet – that form at the edge of the petals set it apart from soft, wavy patterns seen in many other plants.

To investigate this intriguing difference, researchers from the Hebrew University of Jerusalem carried out theoretical modelling and conducted a series of experiments with synthetic disc “petals”. They found that the pointed cusps that form at the edge of rose petals are due to a type of geometric frustration called a Mainardi–Codazzi–Peterson (MCP) incompatibility. This type of mechanism results in stress concentrating in a specific area, which goes on to form cusps to avoid tearing or forming unnatural folding. When the researchers suppressed the formation of cusps, they found that the discs revert to being smooth and concave. The researchers say that the findings could be used for applications in soft robotics and even in the deployment of spacecraft components.

Wild Card physics

The Wild Cards universe is a series of novels set largely during an alternate history of the US following the Second World War. The series follows events after an extraterrestrial virus, known as the Wild Card virus, has spread worldwide. It mutates human DNA causing profound changes in human physiology. The virus follows a fixed statistical distribution in that 90% of those infected die, 9% become physically mutated (referred to as “jokers”) and 1% gain superhuman abilities (known as “aces”). Such capabilities include the ability to fly as well as being able to move between dimensions. George R R Martin, the author who co-edits the Wild Cards series, co-authored a paper examining the complex dynamics of the Wild Card virus together with Los Alamos National Laboratory theoretical physicist Ian Tregillis, who is also a science-fiction author. The model takes into consideration the severity of the changes (for the 10% that don’t instantly die) and the mix of joker/ace traits. The result is a dynamical system in which a carrier’s state vector constantly evolves through the model space – until their “card” turns. At that point the state vector becomes fixed and its permanent location determines the fate of the carrier. “The fictional virus is really just an excuse to justify the world of Wild Cards, the characters who inhabit it, and the plot lines that spin out from their actions,” says Tregillis.

Glass of beer with foamy top
Bubble vision: researchers have discovered that triple-fermented beer feature the most stable beer foam heads (courtesy: AIP/Chatzigiannakis et al.)

Foamy top

And finally, a clear sign of a good brew is a big head of foam at the top of a poured glass. Beer foam is made of many small bubbles of air, separated from each other by thin films of liquid. These thin films must remain stable, or the bubbles will pop, and the foam will collapse. What holds these thin films together is not completely understood and is likely conglomerates of proteins, surface viscosity or the presence of surfactants – molecules that can reduce surface tension and are found in soaps and detergents. To find out more, researchers from ETH Zurich and Eindhoven University of Technology investigated beer-foam stability for different types of beers at varying stages of the fermentation process. They found that for single-fermentation beers, the foams are mostly held together with the surface viscosity of the beer. This is mostly influenced by the proteins in the beer – the more they contain, the more viscous the film and more stable the foam will be. However, for double-fermented beers, the proteins in the beer are slightly denatured by the yeast cells and come together to form a two-dimensional membrane that keeps the foam intact longer. The head was found to be even more stable for triple-fermented beers, which include Trappist beers. The team says that the work could be used to identify ways to increase or decrease the amount of foam so that everyone can pour a perfect glass of beer every time. Cheers!

You can be sure that 2026 will throw up its fair share of quirky stories from the world of physics. See you next year!

The post The quirkiest stories from the world of physics in 2025 appeared first on Physics World.

❌