↩ Accueil

Vue normale

Il y a de nouveaux articles disponibles, cliquez pour rafraîchir la page.
Aujourd’hui — 27 décembre 20246.5 📰 Sciences English

Medical physics and biotechnology: highlights of 2024

Par : Tami Freeman
27 décembre 2024 à 11:00

From tumour-killing quantum dots to proton therapy firsts, this year has seen the traditional plethora of exciting advances in physics-based therapeutic and diagnostic imaging techniques, plus all manner of innovative bio-devices and biotechnologies for improving healthcare. Indeed, the Physics World Top 10 Breakthroughs for 2024 included a computational model designed to improve radiotherapy outcomes for patients with lung cancer by modelling the interaction of radiation with lung cells, as well as a method to make the skin of live mice temporarily transparent to enable optical imaging studies. Here are just a few more of the research highlights that caught our eye.

Marvellous MRI machines

This year we reported on some important developments in the field of magnetic resonance imaging (MRI) technology, not least of which was the introduction of a 0.05 T whole-body MRI scanner that can produce diagnostic quality images. The ultralow-field scanner, invented at the University of Hong Kong’s BISP Lab, operates from a standard wall power outlet and does not require shielding cages. The simplified design makes it easier to operate and significantly lower in cost than current clinical MRI systems. As such, the BISP Lab researchers hope that their scanner could help close the global gap in MRI availability.

Moving from ultralow- to ultrahigh-field instrumentation, a team headed up by David Feinberg at UC Berkeley created an ultrahigh-resolution 7 T MRI scanner for imaging the human brain. The system can generate functional brain images with 10 times better spatial resolution than current 7 T scanners, revealing features as small as 0.35 mm, as well as offering higher spatial resolution in diffusion, physiological and structural MR imaging. The researchers plan to use their new NexGen 7 T scanner to study underlying changes in brain circuitry in degenerative diseases, schizophrenia and disorders such as autism.

Meanwhile, researchers at Massachusetts Institute of Technology and Harvard University developed a portable magnetic resonance-based sensor for imaging at the bedside. The low-field single-sided MR sensor is designed for point-of-care evaluation of skeletal muscle tissue, removing the need to transport patients to a centralized MRI facility. The portable sensor, which weighs just 11 kg, uses a permanent magnet array and surface RF coil to provide low operational power and minimal shielding requirements.

Proton therapy progress

Alongside advances in diagnostic imaging, 2024 also saw a couple of firsts in the field of proton therapy. At the start of the year, OncoRay – the National Center for Radiation Research in Oncology in Dresden – launched the world’s first whole-body MRI-guided proton therapy system. The prototype device combines a horizontal proton beamline with a whole-body MRI scanner that rotates around the patient, a geometry that enables treatments both with patients lying down or in an upright position. Ultimately, the system could enable real-time MRI monitoring of patients during cancer treatments and significantly improve the targeting accuracy of proton therapy.

OncoRay’s research prototype
OncoRay’s research prototype The proton therapy beamline (left) and the opened MRI-guided proton therapy system, showing the in-beam MRI (centre) and patient couch (right). (Courtesy: UKD/Kirsten Lassig)

Also aiming to enhance proton therapy outcomes, a team at the PSI Center for Proton Therapy performed the first clinical implementation of an online daily adaptive proton therapy (DAPT) workflow. Online plan adaptation, where the patient remains on the couch throughout the replanning process, could help address uncertainties arising from anatomical changes during treatments. In five adults with tumours in rigid body regions treated using DAPT, the daily adapted plans provided target coverage to within 1.1% of the planned dose and, in over 90% of treatments, improved dose metrics to the targets and/or organs-at-risk. Importantly, the adaptive approach took just a few minutes longer than a non-adaptive treatment, remaining within the 30-min time slot allocated for a proton therapy session.

Bots and dots

Last but certainly not least, this year saw several research teams demonstrate the use of tiny devices for cancer treatment. In a study conducted at the Institute for Bioengineering of Catalonia, for instance, researchers used self-propelling nanoparticles containing radioactive iodine to shrink bladder tumours.

Graphene quantum dots
Cell death by dots Schematic illustration showing the role of graphene quantum dots as nanozymes for tumour catalytic therapy. (Courtesy: FHIPS)

Upon injection into the body, these “nanobots” search for and accumulate inside cancerous tissue, delivering radionuclide therapy directly to the target. Mice receiving a single dose of the nanobots experienced a 90% reduction in the size of bladder tumours compared with untreated animals.

At the Chinese Academy of Sciences’ Hefei Institutes of Physical Science, a team pioneered the use of metal-free graphene quantum dots for chemodynamic therapy. Studies in cancer cells and tumour-bearing mice showed that the quantum dots caused cell death and inhibition of tumour growth, respectively, with no off-target toxicity in the animals.

Finally, scientists at Huazhong University of Science and Technology developed novel magnetic coiling “microfibrebots” and used them to stem arterial bleeding in a rabbit – paving the way for a range of controllable and less invasive treatments for aneurysms and brain tumours.

The post Medical physics and biotechnology: highlights of 2024 appeared first on Physics World.

  •  
Hier — 26 décembre 20246.5 📰 Sciences English

The physics of ice cream: food scientist Douglas Goff talks about this remarkable material

26 décembre 2024 à 15:46

December might be dark and chilly here in the northern hemisphere, but it’s summer south of the equator – and for many people that means eating ice cream.

It turns out that the physics of ice cream is rather remarkable – as I discovered when I travelled to Canada’s University of Guelph to interview the food scientist Douglas Goff. He is a leading expert on the science of frozen desserts and in this podcast he talks about the unique material properties of ice cream, the analytical tools he uses to study it, and why ice cream goes off when it is left in the freezer for too long.

 

The post The physics of ice cream: food scientist Douglas Goff talks about this remarkable material appeared first on Physics World.

  •  
À partir d’avant-hier6.5 📰 Sciences English

Give Your Social Health a Decent Workout

25 décembre 2024 à 10:00
Your physical and mental well-being are crucial—but the picture isn’t complete if you aren’t flexing your connection muscles, too. Here’s how to build—and keep—your social health.

  •  

PLANCKS physics quiz – how do you measure up against the brightest physics students in the UK and Ireland?

Par : No Author
24 décembre 2024 à 10:00

Each year, the International Association of Physics Students organizes a physics competition for bachelor’s and master’s students from across the world. Known as the Physics League Across Numerous Countries for Kick-ass Students (PLANCKS), it’s a three-day event where teams of three to four students compete to answer challenging physics questions.

In the UK and Ireland, teams compete in a preliminary competition to be sent to the final. Here are some fiendish questions from past PLANCKS UK and Ireland preliminaries and the 2024 final in Dublin, written by Anthony Quinlan and Sam Carr, for you to try this holiday season.

Question 1: 4D Sun

Imagine you have been transported to another universe with four spatial dimensions. What would the colour of the Sun be in this four-dimensional universe? You may assume that the surface temperature of the Sun is the same as in our universe and is approximately T = 6 × 103 K. [10 marks]

Boltzmann constant, kB = 1.38 × 10−23 J K−1

Speed of light, c = 3 × 108 m s−1

Question 2: Heavy stuff

In a parallel universe, two point masses, each of 1 kg, start at rest a distance of 1 m apart. The only force on them is their mutual gravitational attraction, F = –Gm1m2/r2. If it takes 26 hours and 42 minutes for the two masses to meet in the middle, calculate the value of the gravitational constant G in this universe. [10 marks]

Question 3: Just like clockwork

Consider a pendulum clock that is accurate on the Earth’s surface. Figure 1 shows a simplified view of this mechanism.

Simplified schematic of a pendulum clock mechanism
1 Tick tock Simplified schematic of a pendulum clock mechanism. When the pendulum swings one way (a), the escapement releases the gear attached to the hanging mass and allows it to fall. When the pendulum swings the other way (b) the escapement stops the gear attached to the mass moving so the mass stays in place. (Courtesy: Katherine Skipper/IOP Publishing)

A pendulum clock runs on the gravitational potential energy from a hanging mass (1). The other components of the clock mechanism regulate the speed at which the mass falls so that it releases its gravitational potential energy over the course of a day. This is achieved using a swinging pendulum of length l (2), whose period is given by

T=2πlg

where g is the acceleration due to gravity.

Each time the pendulum swings, it rocks a mechanism called an “escapement” (3). When the escapement moves, the gear attached to the mass (4) is released. The mass falls freely until the pendulum swings back and the escapement catches the gear again. The motion of the falling mass transfers energy to the escapement, which gives a “kick” to the pendulum that keeps it moving throughout the day.

Radius of the Earth, R = 6.3781 × 106 m

Period of one Earth day, τ0 = 8.64 × 104 s

How slow will the clock be over the course of a day if it is lifted to the hundredth floor of a skyscraper? Assume the height of each storey is 3 m. [4 marks]

Question 4: Quantum stick

Imagine an infinitely thin stick of length 1 m and mass 1 kg that is balanced on its end. Classically this is an unstable equilibrium, although the stick will stay there forever if it is perfectly balanced. However, in quantum mechanics there is no such thing as perfectly balanced due to the uncertainty principle – you cannot have the stick perfectly upright and not moving at the same time. One could argue that the quantum mechanical effects of the uncertainty principle on the system are overpowered by others, such as air molecules and photons hitting it or the thermal excitation of the stick. Therefore, to investigate we would need ideal conditions such as a dark vacuum, and cooling to a few milli­kelvins, so the stick is in its ground state.

Moment of inertia for a rod,

I=13ml2

where m is the mass and l is the length.

Uncertainty principle,

ΔxΔp2

There are several possible approximations and simplifications you could make in solving this problem, including:

sinθ ≈ θ for small θ

cosh1x=ln x+x21

and

sinh1x=ln x+x2+1

Calculate the maximum time it would take such a stick to fall over and hit the ground if it is placed in a state compatible with the uncertainty principle. Assume that you are on the Earth’s surface. [10 marks]

Hint: Consider the two possible initial conditions that arise from the uncertainty principle.

  • Answers will be posted here on the Physics World website next month. There are no prizes.
  • If you’re a student who wants to sign up for the 2025 edition of PLANCKS UK and Ireland, entries are now open at plancks.uk

The post PLANCKS physics quiz – how do you measure up against the brightest physics students in the UK and Ireland? appeared first on Physics World.

  •  
❌
❌