↩ Accueil

Vue normale

Hier — 7 janvier 20256.5 📰 Sciences English

New method recycles quantum dots used in microscopic lasers

7 janvier 2025 à 15:00

Researchers at the University of Strathclyde, UK, have developed a new method to recycle the valuable semiconductor colloidal quantum dots used to fabricate supraparticle lasers. The recovered particles can be reused to build new lasers with a photoluminescence quantum yield almost as high as lasers made from new particles.

Supraparticle lasers are a relatively new class of micro-scale lasers that show much promise in applications such as photocatalysis, environmental sensing, integrated photonics and biomedicine. The active media in these lasers – the supraparticles – are made by assembling and densely packing colloidal quantum dots (CQDs) in the microbubbles formed in a surfactant-stabilized oil-and-water emulsion. The underlying mechanism is similar to the way that dish soap, cooking oil and water mix when we do the washing up, explains Dillon H Downie, a physics PhD student at Strathclyde and a member of the research team led by Nicolas Laurand.

Supraparticles have a high refractive index compared to their surrounding medium. Thanks to this difference, light at the interface between them experiences total internal reflection. This means that when the diameter of the supraparticles is an integer multiple of the wavelength of the incident light, so-called whispering gallery modes (resonant light waves that travel around a concave boundary) form within the supraparticles.

“The supraparticles are therefore microresonators made of an optical gain material (the quantum dots),” explains Downie, “and individual supraparticles can be made to lase by optically pumping them.”

Conceptual image of a supraparticle showing them as a collection of spheres suspended inside a larger sphere, with a red and purple ring around the middle representing the whispering gallery mode circulation
Resonating and recyclable: Supraparticle lasers confine and amplify light through whispering gallery modes — resonant light waves circulating along a spherical boundary — inside a tiny sphere made from aggregated colloidal quantum dots. (Courtesy: Dillon H Downie, University of Strathclyde)

The problem is that many CQDs are made from expensive and sometimes toxic elements. Demand for these increasingly scarce elements will likely outstrip supply before the end of this decade, but at present, only 2% of quantum dots made from these rare-earth elements are recycled. While researchers have been exploring ways of recovering them from electronic waste, the techniques employed often require specialized instruments, complex bio-metallurgical absorbents and hazardous acid-leaching processes. A more environmentally friendly approach is thus sorely needed.

Exceptional recycling potential

In the new work, Laurand, Downie and colleagues recycled supraparticle lasers by first disassembling the CQDs in them. They did this by suspending the dots in an oil phase and applying ultrasonic high-frequency sound waves and heat. They then added water to separate out the dots. Finally, they filtered and purified the disassembled CQDs and tested their fluorescence efficiency before reassembling them into a new laser configuration.

Using this process, the researchers were able to recover 85% of the quantum dots from the initial supraparticle batch. They also found that the recycled quantum dots boasted a photoluminescence quantum yield of 83 ± 16%, which is comparable to the 86 ± 9% for the original particles.

“By testing the lasers’ performance both before and after this process we confirmed their exceptional recycling potential,” Downie says.

Simple, practical technique

Downie describes the team’s technique as simple and practical even for research labs that lack specialized equipment such as centrifuges and scrubbers. He adds that it could also be applied to other self-assembled nanocomposites.

“As we expect nanoparticle aggregates in everything from wearable medical devices to ultrabright LEDs in the future, it is, therefore, not inconceivable that some of these could be sent back for specialized recycling in the same way we do with commercial batteries today,” he tells Physics World. “We may even see a future where rare-earth or some semiconductor elements become critically scarce, necessitating the recycling for any and all devices containing such valuable nanoparticles.”

By proving that supraparticles are reusable, Downie adds, the team’s method provides “ample justification” to anyone wishing to incorporate supraparticle technology into their devices. “This is seen as especially relevant if they are to be used in biomedical applications such as targeted drug delivery systems, which would otherwise be limited to single-use,” he says.

With work on colloidal quantum dots and supraparticle lasers maturing at an incredible rate, Downie adds that it is “fantastic to be able to mature the process of their recycling alongside this progress, especially at such an early stage in the field”.

The study is detailed in Optical Materials Express.

The post New method recycles quantum dots used in microscopic lasers appeared first on Physics World.

Entanglement entropy in protons affects high-energy collisions, calculations reveal

7 janvier 2025 à 09:50

An international team of physicists has used the principle of entanglement entropy to examine how particles are produced in high-energy electron–proton collisions. Led by Kong Tu at Brookhaven National Laboratory in the US, the researchers showed that quarks and gluons in protons are deeply entangled and approach a state of maximum entanglement when they take part in high-energy collisions.

While particle physicists have made significant progress in understanding the inner structures of protons, neutrons, and other hadrons, there is still much to learn. Quantum chromodynamics (QCD) says that the proton and other hadrons comprise quarks, which are tightly bound together via exchanges of gluons – mediators of the strong force. However, using QCD to calculate the properties of hadrons is notoriously difficult except under certain special circumstances.

Calculations can be simplified by describing the quarks and gluons as partons in a model that was developed in late 1960s by James Bjorken, Richard Feynman, Vladimir Gribov and others. “Here, all the partons within a proton appear ‘frozen’ when the proton is moving very fast relative to an observer, such as in high-energy particle colliders,” explains Tu.

Dynamic and deeply complex interactions

While the parton model is useful for interpreting the results of particle collisions, it cannot fully capture the dynamic and deeply complex interactions between quarks and gluons within protons and other hadrons. These interactions are quantum in nature and therefore involve entanglement. This is a purely quantum phenomenon whereby a group of particles can be more highly correlated than is possible in classical physics.

“To analyse this concept of entanglement, we utilize a tool from quantum information science named entanglement entropy, which quantifies the degree of entanglement within a system,” Tu explains.

In physics, entropy is used to quantify the degree of randomness and disorder in a system. However, it can also be used in information theory to measure the degree of uncertainty within a set of possible outcomes.

“In terms of information theory, entropy measures the minimum amount of information required to describe a system,” Tu says. “The higher the entropy, the more information is needed to describe the system, meaning there is more uncertainty in the system. This provides a dynamic picture of a complex proton structure at high energy.”

Deeply entangled

In this context, particles in a system with high entanglement entropy will be deeply entangled – whereas those in a system with low entanglement entropy will be mostly uncorrelated.

In recent studies, entanglement entropy has been used to described how hadrons are produced through deep inelastic scattering interactions – such as when an electron or neutrino collides with a hadron at high energy. However, the evolution with energy of entanglement entropy within protons had gone largely unexplored. “Before we did this work, no one had looked at entanglement inside of a proton in experimental high-energy collision data,” says Tu.

Now, Tu’s team investigated how entanglement entropy varies with the speed of the proton – and how this relationship relates to the hadrons created during inelastic collisions.

Matching experimental data

Their study revealed that the equations of QCD can accurately predict the evolution of entanglement entropy – with their results closely matching with experimental collision data. Perhaps most strikingly, they discovered that if this entanglement entropy is increased at high energies, it may approach a state of maximum entanglement under certain conditions. This high degree of entropy is evident in the large numbers of particles that are produced in electron–proton collisions.

The researchers are now confident that their approach could lead to further insights about QCD. “This method serves as a powerful tool for studying not only the structure of the proton, but also those of the nucleons within atomic nuclei.” Tu explains. “It is particularly useful for investigating the underlying mechanisms by which nucleons are modified in the nuclear environment.”

In the future, Tu and colleagues hope that their model could boost our understanding of processes such as the formation and fragmentation of hadrons within the high-energy jets created in particle collisions, and the resulting shift in parton distributions within atomic nuclei. Ultimately, this could lead to a fresh new perspective on the inner workings of QCD.

The research is described in Reports on Progress in Physics.

The post Entanglement entropy in protons affects high-energy collisions, calculations reveal appeared first on Physics World.

À partir d’avant-hier6.5 📰 Sciences English

Cross-linked polymer is both stiff and stretchy

6 janvier 2025 à 12:33

A new foldable “bottlebrush” polymer network is both stiff and stretchy – two properties that have been difficult to combine in polymers until now. The material, which has a Young’s modulus of 30 kPa even when stretched up to 800% of its original length, could be used in biomedical devices, wearable electronics and soft robotics systems, according to its developers at the University of Virginia School of Engineering and Applied Science in the US.

Polymers are made by linking together building blocks of monomers into chains. To make polymers elastic, these chains are crosslinked by covalent chemical bonds. The crosslinks connect the polymer chains so that when a force is applied to stretch the polymer, it recovers its shape when the force is removed.

A polymer can be made stiffer by adding more crosslinks, to shorten the polymer chain. The stiffness increases because the crosslinks supress the thermal fluctuations of network strands, but this has the effect of making it brittle. This limitation has held back the development of materials that need both stiffness and stretchability, says materials scientist and engineer Liheng Cai, who led this new research effort.

Foldable bottlebrush polymers

In their new work, the researchers hypothesized that foldable bottlebrush-like polymers might not suffer from this problem. These polymers consist of many densely packed linear side chains randomly separated by small spacer monomers. There is a prerequisite, however: the side chains need to have a relatively high molecular weight (MW) and a low glass transition temperature (Tg) while the spacer monomer needs to be low MW and incompatible with the side chains. Achieving this requires control over the incompatibility between backbones and side chain chemistries, explains Baiqiang Huang, who is a PhD student in Cai’s group.

The researchers discovered that two polymers, poly(dimethyl siloxane) (PDMS) and benzyl methacrylate (BnMA) fit the bill here. PDMS is used as the side chain material and BnMA as the spacer monomer. The two are highly incompatible and have very different Tg values of −100°C and 54°C, respectively.

When stretched, the collapsed backbone in the polymer unfolds to release the stored length, so allowing it to be “remarkably extensible”, write the researchers in Science Advances. In contrast, the stiffness of the material changes little thanks to the molecular properties of the side chains in the polymer, says Huang. “Indeed, in our experiments, we demonstrated a significant enhancement in mechanical performance, achieving a constant Young’s modulus of 30 kPa and a tensile breaking strain that increased 40-fold, from 20% to 800%, compared to standard polymers.”

And that is not all: the design of the new foldable bottlebrush polymer means that stiffness and stretchability can be controlled independently in a material for the first time.

Potential applications

The work will be important for when it comes to developing next-generation materials with tailored mechanical properties. According to the researchers, potential applications include durable and flexible prosthetics, high-performance wearable electronics and stretchable materials for soft robotics and medical implants.

Looking forward, the researchers say they will now be focusing on optimizing the molecular structure of their polymer network to fine-tune its mechanical properties for specific applications. They also aim to incorporate functional metallic nanoparticles into the networks, so creating multifunctional materials with specific electrical, magnetic or optical properties. “These efforts will extend the utility of foldable bottlebrush polymer networks to a broader range of applications,” says Cai.

The post Cross-linked polymer is both stiff and stretchy appeared first on Physics World.

❌
❌