↩ Accueil

Vue normale

index.feed.received.today — 4 avril 20256.5 📰 Sciences English
index.feed.received.yesterday — 3 avril 20256.5 📰 Sciences English

Exail unveils Spacelink-PCE, a new propagation channel emulator for satellite communication enhanced

3 avril 2025 à 20:19

Toulouse (France) – 11/03/2025 – Exail, a global leader in space communication solutions, announces the launch of Spacelink-PCE, its latest-generation Propagation Channel Emulator. Designed to accurately replicate the radio propagation […]

The post Exail unveils Spacelink-PCE, a new propagation channel emulator for satellite communication enhanced appeared first on SpaceNews.

Frontgrade Gaisler and wolfSSL Collaborate to Enhance Cybersecurity in Space Applications

3 avril 2025 à 16:36
Frontgrade logo

Gothenburg, Sweden (April 3, 2025) – Frontgrade Gaisler, a leading provider of radiation-hardened microprocessors for space missions, and wolfSSL, a renowned provider of embedded security solutions, are pleased to announce […]

The post Frontgrade Gaisler and wolfSSL Collaborate to Enhance Cybersecurity in Space Applications appeared first on SpaceNews.

CSF President Dave Cavossa Testifies Before the U.S.-China Economic and Security Review Commission

3 avril 2025 à 15:30
Commercial Space Federation (CSF) logo

April 3, 2025 – Washington, DC — Dave Cavossa, President of the Commercial Space Federation (CSF), will join U.S. Space Force Chief, General Chance Saltzman, and other experts today to […]

The post CSF President Dave Cavossa Testifies Before the U.S.-China Economic and Security Review Commission appeared first on SpaceNews.

Operating system for quantum networks is a first

3 avril 2025 à 15:08

Researchers in the Netherlands, Austria, and France have created what they describe as the first operating system for networking quantum computers. Called QNodeOS, the system was developed by a team led by Stephanie Wehner at Delft University of Technology. The system has been tested using several different types of quantum processor and it could help boost the accessibility of quantum computing for people without an expert knowledge of the field.

In the 1960s, the development of early operating systems such as OS/360 and UNIX  represented a major leap forward in computing. By providing a level of abstraction in its user interface, an operating system enables users to program and run applications, without having to worry about how to reconfigure the transistors in the computer processors. This advance laid the groundwork for the many of the digital technologies that have revolutionized our lives.

“If you needed to directly program the chip installed in your computer in order to use it, modern information technologies would not exist,” Wehner explains. “As such, the ability to program and run applications without needing to know what the chip even is has been key in making networks like the Internet actually useful.”

Quantum and classical

The users of nascent quantum computers would also benefit from an operating system that allows quantum (and classical) computers to be connected in networks. Not least because most people are not familiar with the intricacies of quantum information processing.

However, quantum computers are fundamentally different from their classical counterparts, and this means a host of new challenges faces those developing network operating systems.

“These include the need to execute hybrid classical–quantum programs, merging high-level classical processing (such as sending messages over a network) with quantum operations (such as executing gates or generating entanglement),” Wehner explains.

Within these hybrid programs, quantum computing resources would only be used when specifically required. Otherwise, routine computations would be offloaded to classical systems, making it significantly easier for developers to program and run their applications.

No standardized architecture

In addition, Wehner’s team considered that, unlike the transistor circuits used in classical systems, quantum operations currently lack a standardized architecture – and can be carried out using many different types of qubits.

Wehner’s team addressed these design challenges by creating a QNodeOS, which is a hybridized network operating system. It combines classical and quantum “blocks”, that provide users with a platform for performing quantum operations.

“We implemented this architecture in a software system, and demonstrated that it can work with different types of quantum hardware,” Wehner explains. The qubit-types used by the team included the electronic spin states of nitrogen–vacancy defects in diamond and the energy levels of individual trapped ions.

Multi-tasking operation

“We also showed how QNodeOS can perform advanced functions such as multi-tasking. This involved the concurrent execution of several programs at once, including compilers and scheduling algorithms.”

QNodeOS is still a long way from having the same impact as UNIX and other early operating systems. However, Wehner’s team is confident that QNodeOS will accelerate the development of future quantum networks.

“It will allow for easier software development, including the ability to develop new applications for a quantum Internet,” she says. “This could open the door to a new area of quantum computer science research.”

The research is described in Nature.

The post Operating system for quantum networks is a first appeared first on Physics World.

Epithelial cells send electrical signals, possibly to communicate

3 avril 2025 à 11:05

The nervous system is often considered the body’s wiring, sending electrical signals to communicate needs and hazards between different parts of the body. However, researchers at the University of Massachusetts at Amherst have now also measured bioelectronic signals propagating from cultured epithelial cells, as they respond to a critical injury.

“Cells are pretty amazing in terms of how they are making collective decisions, because it seems like there is no centre, like a brain,” says researcher Sunmin Yu, who likens epithelial cells to ants in the way that they gather information and solve problems. Alongside lab leader Steve Granick, Yu reports this latest finding in Proceedings of the National Academy of Sciences, suggesting a means for the communication between cells that enables them to coordinate with each other.

While neurons function by bioelectric signals, and punctuated rhythmic bioelectrical signals allow heart muscle cells to keep the heart pumping blood throughout our body, when it comes to intercell signals for any other type of cell, the most common hypothesis is the exchange of chemical cues. Yu, however, had noted from previous work by other groups that the process of “extruding” wounded epithelial cells to get rid of them involved increased expression of the relevant proteins at some distance from the wound itself.

“Our thought process was to inquire about the mechanism by which information could be transmitted over the necessary long distance,” says Yu. She realised that common molecular signalling mechanisms, such as extracellular signal-regulated kinase 1/2 (ERK), which has a speed of around 1 mm/s, would be rather slow as a potential conduit.

Epithelial signals measure up

Yu and Granick grew a layer of epithelial cells on a microelectrode array (MEA). While other approaches to measuring electrical activity in cultured cells exist, an MEA has the advantage of combining electrical sensitivity with a long range, enabling the researchers to collect both temporal and spatial information on electrical activity. They then “wounded” the cells by exposing them to an intense focused laser beam.

Following the wound, the researchers observed electrical potential changes with comparable amplitudes and similar shapes to those observed in neurons, but over much longer periods of time. “The signal propagation speed we measured is about 1000 times slower than neurons and 10 times faster than ERK,” says Yu, expressing great interest in whether the “high-pitch speaking” neurons and heart tissue cells communicate with these “low-pitch speaking” epithelial cells, and if so, how.

The researchers noted an apparent threshold in the amplitude of the generated signal required for it to propagate. But for those that met this threshold, propagation of the electric signals spanned regions up to 600 µm for as long as measurements could be recorded, which was 5 h. Given the mechanical forces generated during “cell extrusion”, the researchers hypothesized the likely role of mechanosensitive proteins in generating the signals. Sure enough, inhibiting the mechanosensitive ion channels shut down the generation of electrical signals.

Yu and Granick highlight previous suggestions that electrical potentials in epithelial cells may be important for regulating the coordinated changes that take place during embryogenesis and regeneration, as well as being implicated in cancer. However, this is the first observation of such electrical potentials being generated and propagating across epithelial tissue.

“Yu and Granick have discovered a remarkable new form of electrical signalling emitted by wounded epithelial cells – cells traditionally viewed as electrically passive,” says Seth Fraden, whose lab at Brandeis University in Massachusetts in the US investigates a range of soft matter topics but was not involved in this research.

Fraden adds that it raises an “intriguing” question: “What is the signal’s target? In light of recent findings by Nathan Belliveau and colleagues, identifying the protein Galvanin as a specific electric-field sensor in immune cells, a compelling hypothesis emerges: epithelial cells send these electric signals as distress calls and immune cells – nature’s healers – receive them to rapidly locate and respond to tissue injuries. Such insights may have profound implications for developing novel regenerative therapies and bioelectric devices aimed at accelerating wound healing.”

Adam Ezra Cohen, whose team at Harvard University in the US focuses on innovative technology for probing molecules and cells, and who was not directly involved in this research, also finds the research “intriguing” but raises numerous questions: “What are the underlying membrane voltage dynamics?  What are the molecular mechanisms that drive these spikes? Do similar things happen in intact tissues or live animals?” he asks, adding that techniques such as patch clamp electrophysiology and voltage imaging could address these questions.

The post Epithelial cells send electrical signals, possibly to communicate appeared first on Physics World.

index.feed.received.before_yesterday6.5 📰 Sciences English

Frontgrade Gaisler Launches New GRAIN Line and Wins SNSA Contract to Commercialize First Energy-Efficient Neuromorphic AI for Space Applications

2 avril 2025 à 18:31
Frontgrade logo

Gothenburg, Sweden (April 2, 2025) – The Swedish National Space Agency (SNSA) has awarded Frontgrade Gaisler, a leading provider of radiation-hardened microprocessors for space missions, a contract to commercialize the […]

The post Frontgrade Gaisler Launches New GRAIN Line and Wins SNSA Contract to Commercialize First Energy-Efficient Neuromorphic AI for Space Applications appeared first on SpaceNews.

Zwitterions make medical implants safer for patients

2 avril 2025 à 17:00

A new technique could reduce the risk of blood clots associated with medical implants, making them safer for patients. The technique, which was developed by researchers at the University of Sydney, Australia, involves coating the implants with highly hydrophilic molecules known as zwitterions, thereby inhibiting the build-up of clot-triggering proteins.

Proteins in blood can stick to the surfaces of medical implants such as heart valves and vascular stents. When this happens, it produces a cascade effect in which multiple mechanisms lead to the formation of extensive clots and fibrous networks. These clots and networks can impair the function of implanted medical devices so much that invasive surgery may be required to remove or replace the implant.

To prevent this from happening, the surfaces of implants are often treated with polymeric coatings that resist biofouling. Hydrophilic polymeric coatings such as polyethylene glycol are especially useful, as their water-loving nature allows a thin layer of water to form between them and the surface of the implants, held in place via hydrogen and/or electrostatic bonds. This water layer forms a barrier that prevents proteins from sticking, or adsorbing, to the implant.

An extra layer of zwitterions

Recently, researchers discovered that polymers coated with an extra layer of small molecules called zwitterions provided even more protection against protein adsorption. “Zwitter” means “hybrid” in German; hence, zwitterions are molecules that carry both positive and negative charge, making them neutrally charged overall. These molecules are also very hydrophilic and easily form tight bonds with water molecules. The resulting layer of water has a structure that is similar to that of bulk water, which is energetically stable.

A further attraction of zwitterionic coatings for medical implants is that zwitterions are naturally present in our bodies. In fact, they make up the hydrophilic phospholipid heads of mammalian cell membranes, which play a vital role in regulating interactions between biological cells and the extracellular environment.

Plasma functionalization

In the new work, researchers led by Sina Naficy grafted nanometre-thick zwitterionic coatings onto the surfaces of implant materials using a technique called plasma functionalization. They found that the resulting structures reduce the amount of fibrinogen proteins that adsorb onto the implants by roughly nine-fold and decrease blood clot formation (thrombosis) by almost 75%.

Naficy and colleagues achieved their results by optimizing the density, coverage and thickness of the coating. This was critical for realizing the full potential of these materials, they say, because a coating that is not fully optimized would not reduce clotting.

Naficy tells Physics World that the team’s main goal is to enhance the surface properties of medical devices. “These devices when implanted are in contact with blood and can readily cause thrombosis or infection if the surface initiates certain biological cascade reactions,” he explains. “Most such reactions begin when specific proteins adsorb on the surface and activate the next stage of cascade. Optimizing surface properties with the aid of zwitterions can control / inhibit protein adsorption, hence reducing the severity of adverse body reactions.”

The researchers say they will now be evaluating the long-term stability of the zwitterion-polymer coatings and trying to scale up their grafting process. They report their work in Communications Materials and Cell Biomaterials.

The post Zwitterions make medical implants safer for patients appeared first on Physics World.

❌