↩ Accueil

Vue normale

index.feed.received.today — 16 mai 20256.5 📰 Sciences English

Protons take to the road

16 mai 2025 à 18:33

Physicists at CERN have completed a “test run” for taking antimatter out of the laboratory and transporting it across the site of the European particle-physics facility. Although the test was carried out with ordinary protons, the team that performed it says that antiprotons could soon get the same treatment. The goal, they add, is to study antimatter in places other than the labs that create it, as this would enable more precise measurements of the differences between matter and antimatter. It could even help solve one of the biggest mysteries in physics: why does our universe appear to be made up almost entirely of matter, with only tiny amounts of antimatter?

According to the Standard Model of particle physics, each of the matter particles we see around us – from baryons like protons to leptons such as electrons – should have a corresponding antiparticle that is identical in every way apart from its charge and magnetic properties (which are reversed). This might sound straightforward, but it leads to a peculiar prediction. Under the Standard Model, the Big Bang that formed our universe nearly 14 billion years ago should have generated equal amounts of antimatter and matter. But if that were the case, there shouldn’t be any matter left, because whenever pairs of antimatter and matter particles collide, they annihilate each other in a burst of energy.

Physicists therefore suspect that there are other, more subtle differences between matter particles and their antimatter counterparts – differences that could explain why the former prevailed while the latter all but disappeared. By searching for these differences, they hope to shed more light on antimatter-matter asymmetry – and perhaps even reveal physics beyond the Standard Model.

Extremely precise measurements

At CERN’s Baryon-Antibaryon Symmetry Experiment (BASE) experiment, the search for matter-antimatter differences focuses on measuring the magnetic moment (or charge-to-mass ratio) of protons and antiprotons. These measurements need to be extremely precise, but this is difficult at CERN’s “Antimatter Factory” (AMF), which manufactures the necessary low-energy antiprotons in profusion. This is because essential nearby equipment – including the Antiproton Decelerator and ELENA, which reduce the energy of incoming antiprotons from GeV to MeV – produces magnetic field fluctuations that blur the signal.

To carry out more precise measurements, the team therefore needs a way of transporting the antiprotons to other, better-shielded, laboratories. This is easier said than done, because antimatter needs to be carefully isolated from its environment to prevent it from annihilating with the walls of its container or with ambient gas molecules.

The BASE team’s solution was to develop a device that can transport trapped antiprotons on a truck for substantial distances. It is this device, known as BASE-STEP (for Symmetry Tests in Experiments with Portable Antiprotons), that has now been field-tested for the first time.

Protons on the go

During the test, the team successfully transported a cloud of about 105 trapped protons out of the AMF and across CERN’s Meyrin campus over a period of four hours. Although protons are not the same as antiprotons, BASE-STEP team leader Christian Smorra says they are just as sensitive to disturbances in their environment caused by, say, driving them around. “They are therefore ideal stand-ins for initial tests, because if we can transport protons, we should also be able to transport antiprotons,” he says.

Photo of the BASE-STEP system sitting on a bright yellow trolley after being unloaded from the transport crane, which is visible above it. A woman in a hard hat and head scarf watches from the ground, while a man in a hard hat stands above her on a set of steps, also watching.
The next step: BASE-STEP on a transfer trolley, watched over by BASE team members Fatma Abbass and Christian Smorra. (Photo: BASE/Maria Latacz)

The BASE-STEP device is mounted on an aluminium frame and measures 1.95 m x 0.85 m x 1.65 m. At 850‒900 kg, it is light enough to be transported using standard forklifts and cranes.

Like BASE, it traps particles in a Penning trap composed of gold-plated cylindrical electrode stacks made from oxygen-free copper. To further confine the protons and prevent them from colliding with the trap’s walls, this trap is surrounded by a superconducting magnet bore operated at cryogenic temperatures. The second electrode stack is also kept at ultralow pressures of 10-19 bar, which Smorra says is low enough to keep antiparticles from annihilating with residual gas molecules. To transport antiprotons instead of protons, Smorra adds, they would just need to switch the polarity of the electrodes.

The transportable trap system, which is detailed in Nature, is designed to remain operational on the road. It uses a carbon-steel vacuum chamber to shield the particles from stray magnetic fields, and its frame can handle accelerations of up to 1g (9.81 m/s2) in all directions over and above the usual (vertical) force of gravity. This means it can travel up and down slopes with a gradient of up to 10%, or approximately 6°.

Once the BASE-STEP device is re-configured to transport antiprotons, the first destination on the team’s list is a new Penning-trap system currently being constructed at the Heinrich Heine University in Düsseldorf, Germany. Here, physicists hope to search for charge-parity-time (CPT) violations in protons and antiprotons with a precision at least 100 times higher than is possible at CERN’s AMF.

“At BASE, we are currently performing measurements with a precision of 16 parts in a trillion,” explains BASE spokesperson Stefan Ulmer, an experimental physicist at Heinrich Heine and a researcher at CERN and Japan’s RIKEN laboratory. “These experiments are the most precise tests of matter/antimatter symmetry in the baryon sector to date, but to make these experiments better, we have no choice but to transport the particles out of CERN’s antimatter factory,” he tells Physics World.

The post Protons take to the road appeared first on Physics World.

index.feed.received.yesterday — 15 mai 20256.5 📰 Sciences English

Live – A Conversation with Rep. George Whitesides

15 mai 2025 à 19:11
Webinar with Rep. Whitesides

Join us on June 10 for an exclusive one-on-one conversation with Representative George Whitesides (D-CA), a freshman congressman representing California’s 27th District. Whitesides brings years of experience to Capitol Hill, having previously served as NASA’s Chief of Staff and as CEO of Virgin Galactic.

The post Live – A Conversation with Rep. George Whitesides appeared first on SpaceNews.

Quantum computing for artists, musicians and game designers

15 mai 2025 à 15:55

Many creative industries rely on cutting-edge digital technologies, so it is not surprising that this sector could easily become an early adopter of quantum computing.

In this episode of the Physics World Weekly podcast I am in conversation with James Wootton, who is chief scientific officer at Moth Quantum. Based in the UK and Switzerland, the company is developing quantum-software tools for the creative industries – focusing on artists, musicians and game developers.

Wootton joined Moth Quantum in September 2024 after working on quantum error correction at IBM. He also has long-standing interest in quantum gaming and creating tools that make quantum computing more accessible. If you enjoyed this interview with Wootton, check out this article that he wrote for Physics World in 2018: “Playing games with quantum computers“.

This article forms part of Physics World‘s contribution to the 2025 International Year of Quantum Science and Technology (IYQ), which aims to raise global awareness of quantum physics and its applications.

Stayed tuned to Physics World and our international partners throughout the next 12 months for more coverage of the IYQ.

Find out more on our quantum channel.

 

The post Quantum computing for artists, musicians and game designers appeared first on Physics World.

Accelerating investment in the final frontier: leveraging administrative approvals to bolster commercial space development

15 mai 2025 à 15:00
Artist's concept of a solar panel array on Mars. Credit: Redwire

In the American economy, property rights are so fundamental to commercial activities that we often take them for granted. Without these fundamental tenets of society, development and commerce would be […]

The post Accelerating investment in the final frontier: leveraging administrative approvals to bolster commercial space development appeared first on SpaceNews.

Five-body recombination could cause significant loss from atom traps

15 mai 2025 à 10:05

Five-body recombination, in which five identical atoms form a tetramer molecule and a single free atom, could be the largest contributor to loss from ultracold atom traps at specific “Efimov resonances”, according to calculations done by physicists in the US. The process, which is less well understood than three- and four-body recombination, could be useful for building molecules, and potentially for modelling nuclear fusion.

A collision involving trapped atoms can be either elastic – in which the internal states of the atoms and their total kinetic energy remain unchanged – or inelastic, in which there is an interchange between the kinetic energy of the system and the internal energy states of the colliding atoms.

Most collisions in a dilute quantum gas involve only two atoms, and when physicists were first studying Bose-Einstein condensates (the ultralow-temperature state of some atomic gases), they suppressed inelastic two-body collisions, keeping the atoms in the desired state and preserving the condensate. A relatively small number of collisions, however, involve three or more bodies colliding simultaneously.

“They couldn’t turn off three body [inelastic collisions], and that turned out to be the main reason atoms leaked out of the condensate,” says theoretical physicist Chris Greene of Purdue University in the US.

Something remarkable

While attempting to understand inelastic three-body collisions, Greene and colleagues made the connection to work done in the 1970s by the Soviet theoretician Vitaly Efimov. He showed that at specific “resonances” of the scattering length, quantum mechanics allowed two colliding particles that could otherwise not form a bound state to do so in the presence of a third particle. While Efimov first considered the scattering of nucleons (protons and neutrons) or alpha particles, the effect applies to atoms and other quantum particles.

In the case of trapped atoms, the bound dimer and free atom are then ejected from the trap by the energy released from the binding event. “There were signatures of this famous Efimov effect that had never been seen experimentally,” Greene says. This was confirmed in 2005 by experiments from Rudolf Grimm’s group at the University of Innsbruck in Austria.

Hundreds of scientific papers have now been written about three-body recombination. Greene and colleagues subsequently predicted resonances at which four-body Efimov recombination could occur, producing a trimer. These were observed almost immediately by Grimm and colleagues. “Five was just too hard for us to do at the time, and only now are we able to go that next step,” says Greene.

Principal loss channel

In the new work, Greene and colleague Michael Higgins modelled collisions between identical caesium atoms in an optical trap. At specific resonances, five-body recombination – in which four atoms combine to produce a tetramer and a free particle – is not only enhanced but becomes the principal loss channel. The researchers believe these resonances should be experimentally observable using today’s laser box traps, which hold atomic gases in a square-well potential.

“For most ultracold experiments, researchers will be avoiding loss as much as possible – they would stay away from these resonances,” says Greene; “But for those of us in the few-body community interested in how atoms bind and resonate and how to describe complicated rearrangement, it’s really interesting to look at these points where the loss becomes resonant and very strong.” This is one technique that can be used to create new molecules, for example.

In future, Greene hopes to apply the model to nucleons themselves. “There have been very few people in the few-body theory community willing to tackle a five-particle collision – the Schrödinger equation has so many dimensions,” he says.

Fusion reactions

He hopes it may be possible to apply the researchers’ toolkit to nuclear reactions. “The famous one is the deuterium/tritium fusion reaction. When they collide they can form an alpha particle and a neutron and release a ton of energy, and that’s the basis of fusion reactors…There’s only one theory in the world from the nuclear community, and it’s such an important reaction I think it needs to be checked,” he says.

The researchers also wish to study the possibility of even larger bound states. However, they foresee a problem because the scattering length of the ground state resonance gets shorter and shorter with each additional particle. “Eventually the scattering length will no longer be the dominant length scale in the problem, and we think between five and six is about where that border line occurs,” Greene says. Nevertheless, higher-lying, more loosely-bound six-body Efimov resonances could potentially be visible at longer scattering lengths.

The research is described in Proceedings of the National Academy of Sciences.

Theoretical physicist Ravi Rau of Louisiana State University in the US is impressed by Greene and Higgins’ work. “For quite some time Chris Greene and a succession of his students and post-docs have been extending the three-body work that they did, using the same techniques, to four and now five particles,” he says. “Each step is much more complicated, and that he could use this technique to extend it to five bosons is what I see as significant.” Rau says, however, that “there is a vast gulf” between five atoms and the number treated by statistical mechanics, so new theoretical approaches may be required to bridge the gap.

The post Five-body recombination could cause significant loss from atom traps appeared first on Physics World.

❌