↩ Accueil

Vue normale

Reçu aujourd’hui — 21 août 20256.5 📰 Sciences English

Nano-engineered flyers could soon explore Earth’s mesosphere

21 août 2025 à 13:00

Small levitating platforms that can stay airborne indefinitely at very high altitudes have been developed by researchers in the US and Brazil. Using photophoresis, the devices could be adapted to carry small payloads in the mesosphere where flight is notoriously difficult. It could even be used in the atmospheres of moons and other planets.

Photophoresis occurs when light illuminates one side of a particle, heating it slightly more than the other. The resulting temperature difference in the surrounding gas means that molecules rebound with more energy on the warmer side than the cooler side – producing a tiny but measurable push.

For most of the time since its discovery in the 1870s, the effect was little more than a curiosity. But with more recent advances in nanotechnology, researchers have begun to explore how photophoresis could be put to practical use.

“In 2010, my graduate advisor, David Keith, had previously written a paper that described photophoresis as a way of flying microscopic devices in the atmosphere, and we wanted to see if larger devices could carry useful payloads,” explains Ben Schafer at Harvard University, who led the research. “At the same time, [Igor Bargatin’s group at the University of Pennsylvania] was doing fascinating work on larger devices that generated photophoretic forces.”

Carrying payloads

These studies considered a wide variety of designs: from artificial aerosols, to thin disks with surfaces engineered to boost the effect. Building on this earlier work, Schafer’s team investigated how lightweight photophoretic devices could be optimized to carry payloads in the mesosphere: the atmospheric layer at about 50–80 km above Earth’s surface, where the sparsity of air creates notoriously difficult flight conditions for conventional aircraft or balloons.

“We used these results to fabricate structures that can fly in near-space conditions, namely, under less than the illumination intensity of sunlight and at the same pressures as the mesosphere,” Schafer explains.

The team’s design consists two alumina membranes – each 100 nm thick, and perforated with nanoscale holes. The membranes are positioned a short distance apart, and connected by ligaments. In addition, the bottom membrane is coated with a light-absorbing chromium layer, causing it to heat the surrounding air more than the top layer as it absorbs incoming sunlight.

As a result, air molecules move preferentially from the cooler top side toward the warmer bottom side through the membranes’ perforations: a photophoretic process known as thermal transpiration. This one-directional flow creates a pressure imbalance across the device, generating upward thrust. If this force exceeds the device’s weight, it can levitate and even carry a payload. The team also suggests that the devices could be kept aloft at night using the infrared radiation emitted by Earth into space.

Simulations and experiments

Through a combination of simulations and experiments, Schafer and his colleagues examined how factors such as device size, hole density, and ligament distribution could be tuned to maximize thrust at different mesospheric altitudes – where both pressure and temperature can vary dramatically. They showed that platforms 10 cm in radius could feasibly remain aloft throughout the mesosphere, powered by sunlight at intensities lower than those actually present there.

Based on these results, the team created a feasible design for a photophoretic flyer with a 3 cm radius, capable of carrying a 10 mg payload indefinitely at altitudes of 75 km. With an optimized design, they predict payloads as large as 100 mg could be supported during daylight.

“These payloads could support a lightweight communications payload that could transmit data directly to the ground from the mesosphere,” Schafer explains. “Small structures without payloads could fly for weeks or months without falling out of the mesosphere.”

With this proof of concept, the researchers are now eager to see photophoretic flight tested in real mesospheric conditions. “Because there’s nothing else that can sustainably fly in the mesosphere, we could use these devices to collect ground-breaking atmospheric data to benefit meteorology, perform telecommunications, and predict space weather,” Schafer says.

Requiring no fuel, batteries, or solar panels, the devices would be completely sustainable. And the team’s ambitions go beyond Earth: with the ability to stay aloft in any low-pressure atmosphere with sufficient light, photophoretic flight could also provide a valuable new approach to exploring the atmosphere of Mars.

The research is described in Nature.

The post Nano-engineered flyers could soon explore Earth’s mesosphere appeared first on Physics World.

Deep-blue LEDs get a super-bright, non-toxic boost

21 août 2025 à 10:00

A team led by researchers at Rutgers University in the US has discovered a new semiconductor that emits bright, deep-blue light. The hybrid copper iodide material is stable, non-toxic, can be processed in solution and has already been integrated into a light-emitting diode (LED). According to its developers, it could find applications in solid-state lighting and display technologies.

Creating white light for solid-state lighting and full-colour displays requires bright, pure sources of red, green and blue light. While stable materials that efficiently emit red or green light are relatively easily to produce, those that generate blue light (especially deep-blue light) are much more challenging. Existing blue-light emitters based on organic materials are unstable, meaning they lose their colour quality over time. Alternatives based on lead-halide perovskites or cadmium-containing colloidal quantum dots are more stable, but also toxic for humans and the environment.

Hybrid copper-halide-based emitters promise the best of both worlds, being both non-toxic and stable. They are also inexpensive, with tuneable optical properties and a high luminescence efficiency, meaning they are good at converting power into visible light.

Researchers have already used a pure inorganic copper iodide material, Cs3Cu2I5, to make deep-blue LEDs. This material emits light at the ideal wavelength of 445 nm, is robust to heat and moisture, and it emits between 87–95% of the excitation photons it absorbs as luminescence photons, giving it a high photoluminescence quantum yield (PLQY).

However, the maximum ratio of photon output to electron input (known as the maximum external quantum efficiency, EQEmax) for this material is very low, at just 1.02%.

Strong deep-blue photoluminescence

In the new work, a team led by Rutgers materials chemist Jing Li developed a hybrid copper iodide with the chemical formula 1D-Cu4I8(Hdabco)4 (CuI(Hda), where Hdabco is 1,4-diazabicyclo-[2.2.2]octane-1-ium. This material emits strong deep-blue light at 449 nm with a PLQY near unity (99.6%).

Li and colleagues opted to use CuI(Hda) as the sole light emitting layer and built a thin-film LED out of it using a solution process. The new device has an EQEmax of 12.6% with colour coordinates (0.147, 0.087) and a peak brightness of around 4000 cd m-2. It is also relatively stable, with an operational half-lifetime (T50) of approximately 204 hours under ambient conditions. These figures mean that its performance rivals the best existing solution-processed deep-blue LEDs, Li says. The team also fabricated a large-area device measuring 4 cm² to demonstrate that the material could be used in real-world applications.

Interfacial hydrogen-bond passivation strategy

The low PLQY of previous such devices is partly due to the fact that charge carriers (electrons and holes) in these materials rapidly recombine in a non-radiative way, typically due to surface and bulk defects, or traps. The charge carriers also have a low radiative recombination rate, which is associated with a small exciton (electron-hole pair) binding energy.

Li and colleagues overcame this problem in their new device thanks to an interfacial hydrogen-bond passivation (DIHP) strategy that involves introducing hydrogen bonds via an ultrathin sheet of polymethylacrylate (PMMA) and a carbazole-phosphonic acid-based self-assembled monolayer (Ac2PACz) at the two interfaces of the CuI(Hda) emissive layer. This effectively passivates both heterojunctions of the copper-iodide hydride light-emitting layer and optimizes exciton binding energies. “Such a synergistic surface modification dramatically boosts the performance of the deep-blue LED by a factor of fourfold,” explains Li.

According to Li, the study suggests a promising route for developing blue emitters that are both energy-efficient and environmentally benign, without compromising on performance. “Through the fabrication of blue LEDs using a low cost, stable and nontoxic material capable of delivering efficient deep-blue light, we address major energy and ecological limitations found in other types of solution-processable emitters,” she tells Physics World.

Li adds that the hydrogen-bonding passivation technique is not limited to the material studied in this work. It could also be applied to minimize interfacial energy losses in a wide range of other solution-based, light-emitting optoelectronic systems.

The team is now pursuing strategies for developing other solution-processable, high-performance hybrid copper iodide-based emitter materials similar to CuI(Hda). “Our goal is to further enhance the efficiency and extend the operational lifetime of LEDs utilizing these next-generation materials,” says Li.

The present work is detailed in Nature.

The post Deep-blue LEDs get a super-bright, non-toxic boost appeared first on Physics World.

West Virginia joins states handing satellites a tiny share of rural broadband subsidies

20 août 2025 à 22:00

SpaceX would get just 1% of the $625 million in rural broadband subsidies proposed by West Virginia, the third state in a row to give satellites only a marginal role in the federal government’s BEAD program.

The post West Virginia joins states handing satellites a tiny share of rural broadband subsidies appeared first on SpaceNews.

Reçu hier — 20 août 20256.5 📰 Sciences English

FAA’s informed consent rules leave space tourists flying blind

20 août 2025 à 15:00
NS-32 liftoff

The Federal Aviation Administration’s (FAA) current informed consent framework under 14 CFR §460.45 falls dangerously short of adequately warning space flight participants (SFP) about the true risks they face, particularly long-term health consequences that may not manifest until months or years after their journey. This regulatory gap threatens both SFP safety and industry credibility as […]

The post FAA’s informed consent rules leave space tourists flying blind appeared first on SpaceNews.

Physicists discover a new proton magic number

20 août 2025 à 15:00

The first precise mass measurements of an extremely short-lived and proton-rich nucleus, silicon-22, have revealed the “magic” – that is, unusually tightly bound – nature of nuclei containing 14 protons. As well as shedding light on nuclear structure, the discovery could improve our understanding of the strong nuclear force and the mechanisms by which elements form.

At the lighter end of the periodic table, stable nuclei tend to contain similar numbers of neutrons and protons. As the number of protons increases, additional neutrons are needed to balance out the mutual repulsion of the positively-charged protons. As a rule, therefore, an isotope of a given element will be unstable if it contains either too few neutrons or too many.

In 1949, Maria Goeppert Mayer and J Hans D Jensen proposed an explanation for this rule. According to their nuclear shell model, nuclei that contain certain “magic” numbers of nucleons (neutrons and/or protons) are more bound because they have just the right number of nucleons to fully fill their shells. Nuclei that contain magic numbers of both protons and neutrons are even more bound and are said to be “doubly magic”. Subsequent studies showed that for neutrons, these magic numbers are 2, 8, 20, 28, 50, 82 and 126.

While the magic numbers for stable and long-lived nuclei are now well-established, those for exotic, short-lived ones with unusual proton-neutron ratios are comparatively little understood. Do these highly unstable nuclei have the same magic numbers as their more stable counterparts? Or are they different?

In recent years, studies showing that neutron-rich nuclei have magic numbers of 14, 16, 32 and 34 have brought scientists closer to answering this question. But what about protons?

“The hunt for new magic numbers in proton-rich nuclei is just as exciting,” says Yuan-Ming Xing, a physicist at the Institute for Modern Physics (IMP) of the Chinese Academy of Sciences, who led the latest study on silicon-22. “This is because we know much less about the evolution of the shell structure of these nuclei, in which the valence protons are loosely bound.” Protons in these nuclei can even couple to states in the continuum, Xing adds, forming the open quantum systems that have become such a hot topic in quantum research.

Mirror nuclei

After measurements on oxygen-22 (14 neutrons, 8 protons) showed that 14 is a magic number of neutrons for this neutron-rich isotope, the hunt was on for a proton-rich counterpart. An important theory in nuclear physics known as isospin symmetry states that nuclei with interchanged numbers of protons and neutrons will have identical characteristics. The magic numbers for protons and neutrons for these “mirror” nuclei, as they are known, are therefore expected to be the same. “Of all the new neutron-rich doubly-magic nuclei discovered, only one loosely bound mirror nucleus for oxygen-22 exists,” says IMP team member Yuhu Zhang. “This is silicon-22.”

The problem is that silicon-22 (14 protons, 8 neutrons) has a short half-life and is hard to produce in quantities large enough to study. To overcome this, the researchers used an improved version of a technique known as Bρ-defined isochronous mass spectroscopy.

Working at the Cooler-Storage Ring of the Heavy Ion Research Facility in Lanzhou, China, Xing, Zhang and an international team of collaborators began by accelerating a primary beam of stable 36Ar15+ ions to around two thirds the speed of light. They then directed this beam onto a 15-mm-thick beryllium target, causing some of the 36Ar ions to fragment into silicon-22 nuclei. After injecting these nuclei into the storage ring, the researchers could measure their velocity and the time it took them to circle the ring. From this, they could determine their mass. This measurement confirmed that the proton number 14 is indeed magic in silicon-22.

A better understanding of nucleon interactions

“Our work offers an excellent opportunity to test the fundamental theories of nuclear physics for a better understanding of nucleon interactions, of how exotic nuclear structures evolve and of the limit of existence of extremely exotic nuclei,” says team member Giacomo de Angelis, a nuclear physicist affiliated with the National Laboratories of Legnaro in Italy as well as the IMP. “It could also help shed more light on the reaction rates for element formation in stars – something that could help astrophysicists to better model cosmic events and understand how our universe works.”

According to de Angelis, this first mass measurement of the silicon-22 nucleus and the discovery of the magic proton number 14 is “a strong invitation not only for us, but also for other nuclear physicists around the world to investigate further”. He notes that researchers at the Facility for Rare Isotope Beams (FRIB) at Michigan State University, US, recently measured the energy of the first excited state of the silicon-22 nucleus. The new High Intensity Heavy-Ion Accelerator Facility (HIAF) in Huizhou, China, which is due to come online soon, should enable even more detailed studies.

“HIAF will be a powerful accelerator, promising us ideal conditions to explore other loosely bound systems, thereby helping theorists to more deeply understand nucleon-nucleon interactions, quantum mechanics of open quantum systems and the origin of elements in the universe,” he says.

The present study is detailed in Physical Review Letters

The post Physicists discover a new proton magic number appeared first on Physics World.

Equations, quarks and a few feathers: more physics than birds

20 août 2025 à 12:00

Lots of people like birds. In Britain alone, 17 million households collectively spend £250m annually on 150,000 tonnes of bird food, while 1.2 million people are paying members of the Royal Society for the Protection of Birds (RSPB), Europe’s largest conservation charity. But what is the Venn diagram overlap between those who like birds and those who like physics?

The 11,000 or more species of birds in the world have evolved to occupy separate ecological niches, with many remarkable abilities that, while beyond human capabilities, can be explained by physics. Owls, for example, detect their prey by hearing with asymmetric ears then fly almost silently to catch it. Kingfishers and ospreys, meanwhile, dive for fish in freshwater or sea, compensating for the change of refractive index at the surface. Kestrels and hummingbirds, on the other hand, can hover through clever use of aerodynamics.

Many birds choose when to migrate by detecting subtle changes in barometric pressure. They are often colourful and can even be blue – a pigment that is scarce in nature – due to the structure of their feathers, which can make them appear kaleidoscopic depending on the viewing angle. Many species can even see into the ultraviolet; the blue tits in our gardens look very different in each other’s eyes than they do to ours.

Those of us with inquisitive minds cannot help but wonder how they do these things. Now, The Physics of Birds and Birding: the Sounds, Colors and Movements of Birds, and Our Tools for Watching Them by retired physicist Michael Hurben covers all of these wonders and more.

Where are the birds?

In each chapter Hurben introduces a new physics-related subject, often with an unexpected connection to birds. The more abstruse topics include fractals, gravity, electrostatics, osmosis and Fourier transforms. You might not think quarks would be mentioned in a book on birds, but they are. Some of these complicated subjects, however, take the author several pages to explain, and it can then be a disappointment to discover just a short paragraph mentioning a bird. It is also only in the final chapter that the author explains flight, the attribute unique among vertebrates to birds (and bats).

The antepenultimate chapter justifies the second part of the book’s title – birding. It describes the principles underlying some of the optical instruments used by humans to detect and identify birds, such as binoculars, telescopes and cameras. The physics is simpler, so the answers here might be more familiar to non-scientist birders. Indeed, focal lengths, refractive indices, shape of lenses and anti-reflection coatings, for example, are often covered in school physics and known to anyone wearing spectacles.

Unfortunately, Hurben has not heeded the warning given to Stephen Hawking by his editor of A Brief History of Time, which is that each equation would halve the book’s readership. That masterpiece includes only the single equation, which any physicist could predict. But The Physics of Birds and Birding sets the scene with seven equations in its first chapter, and many more throughout. While understanding is helped by over 100 small diagrams, if you’re expecting beautiful photos and illustrations of birds, you’ll be disappointed. In fact, there are no images of birds whatsoever – and without them the book appears like an old fashioned black-and-white textbook.

Physicist or birder?

The author’s interest in birds appears to be in travelling to see them, and he has a “life-list” of over 5000 species. But not much attention in this book is paid to those of us who are more interested in studying birds for conservation. For example, there is no mention of thermal imaging instruments or drones – technology that depends a lot on physics – which are increasingly being used to avoid fieldworkers having to search through sensitive vegetation or climb trees to find birds or their nests. Nowadays, there are more interactions between humans and birds using devices such as smartphones, GPS or digital cameras, or indeed the trackers attached to birds by skilled and licensed scientists, but none of these is covered in The Physics of Birds and Birding.

Although I am a Fellow of the Institute of Physics and the Royal Society of Biology who has spent more than 50 years as an amateur birder and published many papers on both topics, it is not clear who is the intended target audience for this volume. It seems to me that it would be of more interest to some physicists who enjoy seeing physics being applied to the natural world, than for birders who want to understand how birds work. Either way, the book is definitely for only a select part of the birder-physicist Venn diagram.

  • 2025 Pelagic Publishing 240pp £30 pb; £30 e-book

The post Equations, quarks and a few feathers: more physics than birds appeared first on Physics World.

Probing quantum entanglement in top quark pairs at the LHC

20 août 2025 à 10:19

Quantum entanglement is a fascinating phenomenon in which the states of two particles become intrinsically linked, such that a change in one particle’s state instantly affects the other, regardless of the distance between them. This nonlocal connection leads to remarkable effects, including the ability to influence one particle by manipulating its entangled partner. Famously, Einstein referred to quantum entanglement as “Spooky Action at a Distance”. Until now, entanglement has been observed in systems involving atoms, electrons, and photons.

Researchers from the CMS Collaboration at CERN have used data collected in 2016 at the Large Hadron Collider (LHC) to investigate quantum entanglement in top quark–antiquark pairs. In these experiments, protons were collided at extremely high energies (13 TeV), which, as predicted by Quantum Chromodynamics, can lead to the production of top quark pairs. The top quark is the heaviest known fundamental particle, and both it and its antiquark counterpart decay almost instantly after being produced.

In this study, CMS focused on events where two leptons (such as electrons or muons) were detected with opposite charges and high momentum. These leptons originate from the decay of the top quark and antiquark and carry information about their parent particles, including their spin. To probe entanglement, the researchers used an observable called D, which quantifies the correlation between the spins of the top quark and antiquark. A value of D < -1/3 serves as a clear signature of quantum entanglement. The CMS result lies more than five standard deviations below this threshold, establishing the observation of entanglement in top quark-antiquark pairs. This offers valuable insight into the behaviour of quantum systems under extreme energy conditions.

The ATLAS Collaboration previously reported the first observation of entanglement. This measurement was carried out at the level of stable particles, reconstructed after hadronization. In contrast, the CMS measurement was performed at the parton level, which refers to the behaviour of the original building blocks of particles (quarks and gluons) before they form composite particles. This approach provides a complementary view of the quantum state.

This groundbreaking work not only confirms that quantum mechanics holds true at the highest energies and shortest timescales by revealing entanglement in the production of the heaviest fundamental particles, but also establishes particle colliders like the LHC as powerful platforms for exploring quantum information science.

Read the full article

Observation of quantum entanglement in top quark pair production in proton-proton collisions at √s = 13 TeV

The CMS Collaboration 2024 Rep. Prog. Phys. 87 117801

Do you want to learn more about this topic?

Top quark physics in hadron collisions by Wolfgang Wagner (2005)

The post Probing quantum entanglement in top quark pairs at the LHC appeared first on Physics World.

How does entanglement affect high-energy collisions?

20 août 2025 à 10:17

Entanglement is fundamental to our understanding of the microscopic world and remains one the strangest aspects of quantum mechanics.

There are various ways to quantify the level of entanglement in quantum systems. One of these measures is called entanglement entropy.

In this context, entropy refers to the minimum amount of information required to describe a system. A system with high entropy requires a lot of information to describe it. This also means that it contains a large amount of uncertainty.

In recent years, there has been a growing interest in quantum entanglement within high-energy physics, for example in understanding the structure of protons and other hadrons.

Hadrons themselves are made up of quarks, which are tightly bound together via exchanges of gluons. The properties of these hadrons can be calculated using our best theory of the strong force – quantum chromodynamics (QCD) – but this is usually very challenging.

In this work, the team investigated how entanglement entropy evolves in high-energy processes. They particularly focused on deep inelastic scattering, where a high-energy electron probes the internal structure of a proton.

By examining how entanglement entropy depends on velocity, the researchers connected theoretical predictions with experimental data on hadron production.

Their results suggest that, in many cases, a state of maximum entanglement is reached. This is where the particles are as strongly correlated as quantum mechanics allows.

The team’s work will lead to a deeper understanding of fundamental QCD processes and help bridge the gap between theoretical predictions and experimental observations of particle collisions.

 

Read the full article

QCD evolution of entanglement entropy – IOPscience

Martin Hentschinski et al 2024 Rep. Prog. Phys. 87 120501

The post How does entanglement affect high-energy collisions? appeared first on Physics World.

❌