↩ Accueil

Vue normale

Reçu aujourd’hui — 9 décembre 2025 6.5 📰 Sciences English

Fermilab opens new building dedicated to Tevatron pioneer Helen Edwards

9 décembre 2025 à 15:59

Fermilab has officially opened a new building named after the particle physicist Helen Edwards. Officials from the lab and the US Department of Energy (DOE) opened the Helen Edwards Engineering Research Center at a ceremony held on 5 December.  The new building is the lab’s largest purpose-built lab and office space since the lab’s iconic Wilson Hall, which was completed in 1974.

Construction of the Helen Edwards Engineering Research Center began in 2019 and was completed three years later. The centre is an 7500 m2 multi-story lab and office building that is adjacent and connected to Wilson Hall.

The new centre is designed as a collaborative lab where engineers, scientists and technicians design, build and test technologies across several areas of research such as neutrino science, particle detectors, quantum science and electronics.

The centre also features cleanrooms, vibration-sensitive labs and cryogenic facilities in which the components of the near detector for the Deep Underground Neutrino Experiment will be assembled and tested.

A pioneering spirit

With a PhD in experimental particle physics from Cornell University, Edwards was heavily involved with commissioning the university’s 10 GeV electron synchrotron. In 1970 Fermilab’s director Robert Wilson appointed Edwards as associate head of the lab’s booster section and she later became head of the accelerator division.

While at Fermilab, Edwards’ primary responsibility was designing, constructing, commissioning and operating the Tevatron, which led to the discoveries of the top quark in 1995 and the tau neutrino in 2000.

Edwards retired in the early 1990s but continued to work as guest scientists at Fermilab and officially switched the Tevatron off during a ceremony held on 30 September 2011. Edwards died in 2016.

Darío Gil, the undersecretary for science at the DOE says that Edwards’ scientific work “is a symbol of the pioneering spirit of US research”.

“Her contributions to the Tevatron and the lab helped the US become a world leader in the study of elementary particles,” notes Gil. “We honour her legacy by naming this research centre after her as Fermilab continues shaping the next generation of research using [artificial intelligence], [machine learning] and quantum physics.”

The post Fermilab opens new building dedicated to Tevatron pioneer Helen Edwards appeared first on Physics World.

LeoLabs lands interagency contract to feed TraCSS and track adversarial spacecraft

9 décembre 2025 à 15:01

LeoLabs has won an interagency contract to provide space-surveillance data for the U.S. government, supporting adversarial spacecraft monitoring and the TraCSS orbital traffic coordination platform due to enter full service early next year.

The post LeoLabs lands interagency contract to feed TraCSS and track adversarial spacecraft appeared first on SpaceNews.

America must stop treating China’s lunar plans as a footrace

9 décembre 2025 à 15:00
Render of a conceptual Chinese lunar base.

It has become conventional wisdom that China’s rise is driven by a coordinated strategy across three fronts here on Earth: dominating critical industries, controlling critical resources and occupying strategically important locations. This is explicit in the Chinese Communist Party’s own planning documents, speeches and industrial policies. We now face the same strategy pointed upward. Beijing […]

The post America must stop treating China’s lunar plans as a footrace appeared first on SpaceNews.

Space-based solar power startup Aetherflux enters orbital data center race

9 décembre 2025 à 13:04
Aetherflux

Space-based solar power startup Aetherflux has thrown its hat into the emerging market for orbital data centers, joining SpaceX, Amazon and others exploring ways to move energy-hungry artificial intelligence compute off Earth.

The post Space-based solar power startup Aetherflux enters orbital data center race appeared first on SpaceNews.

Memristors could measure a single quantum of resistance

9 décembre 2025 à 10:52

A proposed new way of defining the standard unit of electrical resistance would do away with the need for strong magnetic fields when measuring it. The new technique is based on memristors, which are programmable resistors originally developed as building blocks for novel computing architectures, and its developers say it would considerably simplify the experimental apparatus required to measure a single quantum of resistance for some applications.

Electrical resistance is a physical quantity that represents how much a material opposes the flow of electrical current. It is measured in ohms (Ω), and since 2019, when the base units of the International System of Units (SI) were most recently revised, the ohm has been defined in terms of the von Klitzing constant h/e2, where h and e are the Planck constant and the charge on an electron, respectively.

To measure this resistance with high precision, scientists use the fact that the von Klitzing constant is related to the quantized change in the Hall resistance of a two-dimensional electron system (such as the one that forms in a semiconductor heterostructure) in the presence of a strong magnetic field. This quantized change in resistance is known as the quantum Hall effect (QHE), and in a material like GaAs or AlGaAs, it shows up at fields of around 10 Tesla. Generating such high fields typically requires a superconducting electromagnet, however.

A completely different approach

Researchers connected to a European project called MEMQuD are now advocating a completely different approach. Their idea is based on memristors, which are programmable resistors that “remember” their previous resistance state even after they have been switched off. This previous resistance state can be changed by applying a voltage or current.

In the new work, a team led by Gianluca Milano of Italy’s Istituto Nazionale di Ricerca Metrologia (INRiM); Vitor Cabral of the Instituto Português da Qualidade; and Ilia Valov of the Institute of Electrochemistry and Energy Systems at the Bulgarian Academy of Sciences studied a device based on memristive nanoionics cells made from conducting filaments of silver. When an electrical field is applied to these filaments, their conductance changes in distinct, quantized steps.

The MEMQuD team reports that the quantum conductance levels achieved in this set-up are precise enough to be exploited as intrinsic standard values. Indeed, a large inter-laboratory comparison confirmed that the values deviated by just -3.8% and 0.6% from the agreed SI values for the fundamental quantum of conductance, G0, and 2G0, respectively. The researchers attribute this precision to tight, atomic-level control over the morphology of the nanochannels responsible for quantum conductance effects, which they achieved by electrochemically polishing the silver filaments into the desired configuration.

A national metrology institute condensed into a microchip

The researchers say their results are building towards a concept known as an “NMI-in-a-chip” – that is, condensing the services of a national metrology institute into a microchip. “This could lead to measuring devices that have their resistance references built-in directly into the chip,” says Milano, “so doing away with complex measurements in laboratories and allowing for devices with zero-chain traceability – that is, those that do not require calibration since they have embedded intrinsic standards.”

Yuma Okazaki of Japan’s National Institute of Advanced Industrial Science and Technology (AIST), who was not involved in this work, says that the new technique could indeed allow end users to directly access a quantum resistance standard.

“Notably, this method can be demonstrated at room temperature and under ambient conditions, in contrast to conventional methods that require cryogenic and vacuum equipment, which is expensive and require a lot of electrical power,” Okazaki says. “If such a user-friendly quantum standard becomes more stable and its uncertainty is improved, it could lead to a new calibration scheme for ensuring the accuracy of electronics used in extreme environments, such as space or the deep ocean, where traditional quantum standards that rely on cryogenic and vacuum conditions cannot be readily used.”

The MEMQuD researchers, who report their work in Nature Nanotechnology, now plan to explore ways to further decrease deviations from the agreed SI values for G0 and 2G0. These include better material engineering, an improved measurement protocol, and strategies for topologically protecting the memristor’s resistance.

The post Memristors could measure a single quantum of resistance appeared first on Physics World.

Reçu hier — 8 décembre 2025 6.5 📰 Sciences English
❌