↩ Accueil

Vue normale

Reçu aujourd’hui — 22 janvier 2026 6.5 📰 Sciences English

Ask me anything: Mažena Mackoit-Sinkevičienė – ‘Above all, curiosity drives everything’

22 janvier 2026 à 12:00

What skills do you use every day in your job?

Much of my time is spent trying to build and refine models in quantum optics, usually with just a pencil, paper and a computer. This requires an ability to sit with difficult concepts for a long time, sometimes far longer than is comfortable, until they finally reveal their structure.

Good communication is equally essential – I teach students; collaborate with colleagues from different subfields; and translate complex ideas into accessible language for the broader public. Modern physics connects with many different fields, so being flexible and open-minded matters as much as knowing the technical details. Above all, curiosity drives everything. When I don’t understand something, that uncertainty becomes my strongest motivation to keep going.

What do you like best and least about your job?

What I like the best is the sense of discovery – the moment when a problem that has evaded understanding for weeks suddenly becomes clear. Those flashes of insight feel like hearing the quiet whisper of nature itself. They are rare, but they bring along a joy that is hard to find elsewhere.

I also value the opportunity to guide the next generation of physicists, whether in the university classroom or through public science communication. Teaching brings a different kind of fulfilment: witnessing students develop confidence, curiosity and a genuine love for physics.

What I like the least is the inherent uncertainty of research. Questions do not promise favourable answers, and progress is rarely linear. Fortunately, I have come to see this lack of balance not as a weakness but as a source of power that forces growth, new perspectives, and ultimately deeper understanding.

What do you know today that you wish you knew when you were starting out in your career?

I wish I had known that feeling lost is not a sign of inadequacy but a natural part of doing physics at a high level. Not understanding something can be the greatest motivator, provided one is willing to invest time and effort. Passion and curiosity matter far more than innate brilliance. If I had realized earlier that steady dedication can carry you farther than talent alone, I would have embraced uncertainty with much more confidence.

The post Ask me anything: Mažena Mackoit-Sinkevičienė – ‘Above all, curiosity drives everything’ appeared first on Physics World.

D-Orbit raises $128 million in first tranche of Series D funding

22 janvier 2026 à 11:00

SAN FRANCISCO – Italian space logistics specialist D-Orbit has raised $124 million in the first closing of a Series D investment round announced Jan. 22. “This funding will enable strategic acquisitions, accelerate the build-out of D-Orbit’s orbital logistics infrastructure, expand in-orbit transportation services, scale industrial capacity for ION missions and advance new operational capabilities required […]

The post D-Orbit raises $128 million in first tranche of Series D funding appeared first on SpaceNews.

Modelling wavefunction collapse as a continuous flow yields insights on the nature of measurement

22 janvier 2026 à 10:30

“God does not play dice.”

With this famous remark at the 1927 Solvay Conference, Albert Einstein set the tone for one of physics’ most enduring debates. At the heart of his dispute with Niels Bohr lay a question that continues to shape the foundations of physics: does the apparently probabilistic nature of quantum mechanics reflect something fundamental, or is it simply due to lack of information about some “hidden variables” of the system that we cannot access?

Physicists at University College London, UK (UCL) have now addressed this question via the concept of quantum state diffusion (QSD). In QSD, the wavefunction does not collapse abruptly. Instead, wavefunction collapse is modelled as a continuous interaction with the environment that causes the system to evolve gradually toward a definite state, restoring some degree of intuition to the counterintuitive quantum world.

A quantum coin toss

To appreciate the distinction (and the advantages it might bring), imagine tossing a coin. While the coin is spinning in midair, it is neither fully heads nor fully tails – its state represents a blend of both possibilities. This mirrors a quantum system in superposition.

When the coin eventually lands, the uncertainty disappears and we obtain a definite outcome. In quantum terms, this corresponds to wavefunction collapse: the superposition resolves into a single state upon measurement.

In the standard interpretation of quantum mechanics, wavefunction collapse is considered instantaneous. However, this abrupt transition is challenging from a thermodynamic perspective because uncertainty is closely tied to entropy. Before measurement, a system in superposition carries maximal uncertainty, and thus maximum entropy. After collapse, the outcome is definite and our uncertainty about the system is reduced, thereby reducing the entropy.

This apparent reduction in entropy immediately raises a deeper question. If the system suddenly becomes more ordered at the moment of measurement, where does the “missing” entropy go?

From instant jumps to continuous flows

Returning to the coin analogy, imagine that instead of landing cleanly and instantly revealing heads or tails, the coin wobbles, leans, slows and gradually settles onto one face. The outcome is the same, but the transition is continuous rather than abrupt.

This gradual settling captures the essence of QSD. Instead of an instantaneous “collapse”, the quantum state unfolds continuously over time. This makes it possible to track various parameters of thermodynamic change, including a quantity called environmental stochastic entropy production that measures how irreversible the process is.

Another benefit is that whereas standard projective measurements describe an abrupt “yes/no” outcome, QSD models a broader class of generalized or “weak” measurements, revealing the subtle ways quantum systems evolve. It also allows physicists to follow individual trajectories rather than just average outcomes, uncovering details that the standard framework smooths over.

“The QSD framework helps us understand how unpredictable environmental influences affect quantum systems,” explains Sophia Walls, a PhD student at UCL and the first author of a paper in Physical Review A on the research. Environmental noise, Walls adds, is particularly important for quantum technologies, making the study’s insights valuable for quantum error correction, control protocols and feedback mechanisms.

Bridging determinism and probability

At first glance, QSD might seem to resemble decoherence, which also arises from system–environment interactions such as noise. But the two differ in scope. “Decoherence explains how a system becomes a classical mixed state,” Walls clarifies, “but not how it ultimately purifies into a single eigenstate.” QSD, with its stochastic term, describes this final purification – the point where the coin’s faint shimmer sharpens into heads or tails.

In this view, measurement is not a single act but a continuous, entropy-producing flow of information between system and environment – a process that gradually results in manifestation of one of the possible quantum states, rather than an abrupt “collapse”.

“Standard quantum mechanics separates two kinds of dynamics – the deterministic Schrödinger evolution and the probabilistic, instantaneous collapse,” Walls notes. “QSD connects both in a single dynamical equation, offering a more unified description of measurement.”

This continuous evolution makes otherwise intractable quantities, such as entropy production, measurable and meaningful. It also breathes life into the wavefunction itself. By simulating individual realizations, QSD distinguishes between two seemingly identical mixed states: one genuinely entangled with its environment, and another that simply represents our ignorance. Only in the first case does the system dynamically evolve – a distinction invisible in the orthodox picture.

A window on quantum gravity?

Could this diffusion-based framework also illuminate other fundamental questions beyond the nature of measurement? Walls thinks it’s possible. Recent work suggests that stochastic processes could provide experimental clues about how gravity behaves at the quantum scale. QSD may one day offer a way to formalize or test such ideas. “If the nature of quantum gravity can be studied through a diffusive or stochastic process, then QSD would be a relevant framework to explore it,” Walls says.

The post Modelling wavefunction collapse as a continuous flow yields insights on the nature of measurement appeared first on Physics World.

Reçu hier — 21 janvier 2026 6.5 📰 Sciences English

NPL unveils miniature atomic fountain clock  

21 janvier 2026 à 18:23

A miniature version of an atomic fountain clock has been unveiled by researchers at the UK’s National Physical Laboratory (NPL). Their timekeeper occupies just 5% of the volume of a conventional atomic fountain clock while delivering a time signal with a stability that is on par with a full-sized system. The team is now honing its design to create compact fountain clocks that could be used in portable systems and remote locations.

The ticking of an atomic clock is defined by the frequency of the electromagnetic radiation that is absorbed and emitted by a specific transition between atomic energy levels. Today, the second is defined using a transition in caesium atoms that involves microwave radiation. Caesium atoms are placed in a microwave cavity and a measurement-and-feedback mechanism is used to tune the frequency of the cavity radiation to the atomic transition – creating a source of microwaves with a very narrow frequency range centred at the clock frequency.

The first atomic clocks sent a fast-moving beam of atoms through a microwave cavity. The precision of such a beam clock is limited by the relatively short time that individual atoms spend in the cavity. Also, the speed of the atoms means that the measured frequency peak is shifted and broadened by the Doppler effect.

Launching atoms

These problems were addressed by the development of the fountain clock, in which the atoms are cooled (slowed down) by laser light, which also launches the atoms upwards. The atoms pass through a microwave cavity on the way up, and again as they fall back down. The atoms travel at much slower speeds than in a beam clock. The atoms spend much more time in the cavity and therefore the time signal from an atomic clock is much more precise than a beam clock. However, long times result in greater thermal spread of the atomic beam – which degrades clock performance. Trading-off measurement time with thermal spread means that the caesium fountain clocks that currently define the second have drops of about 30 cm.

Other components are also needed to operate fountain clocks – including a vacuum system and laser and microwave instrumentation. This pushes the height of a typical clock to about 2 m, and makes it a complex and expensive instrument that cannot be easily transported.

Now, Sam Walby and colleagues at NPL have shrunk the overall height of a rubidium-based fountain clock to 80 cm, while retaining the 30 cm drop. The result is an instrument that is 5% the volume of one of NPL’s conventional caesium atomic fountain clocks.

Precise yet portable

“That’s taking it from barely being able to fit though a doorway, to something one could pick up and carry with one arm,” says Walby.

Despite the miniaturization, the mini-fountain achieved a stability of one part in 1015 after several days of operation – which NPL says is comparable to full-sized clocks.

Walby told Physics World that the NPL team achieved miniaturization by eliminating two conventional components from their clock design. One is a dedicated chamber used to measure the quantum states of the atoms. Instead, this measurement is make within the clock’s cooling chamber. Also eliminated is a dedicated state-selection microwave cavity, which puts the atoms into the quantum state from which the clock transition occurs.

“The mini-fountain also does this [state] selection,” explains Walby, “but instead of using a dedicated cavity, we use a coax-to-waveguide adapter that is directed into the cooling chamber, which creates a travelling wave of microwaves at the correct frequency.”

The NPL team also reduced the amount of magnetic shielding used, which meant that the edge-effects of the magnetic field had to be more carefully considered. The optics system of the clock was greatly simplified and the use of commercial components mean that the clock is low maintenance and easy to operate – according to NPL.

Radical simplification

“By radically simplifying and shrinking the atomic fountain, we’re making ultra-precise timing technology available beyond national labs,” said Walby. “This opens new possibilities for resilient infrastructure and next-generation navigation.”

According to Walby, one potential use of a miniature atomic fountain clock is as a holdover clock. These are devices that produce a very stable time signal when not synchronized with other atomic clocks. This is important for creating resilience in infrastructure that relies on precision timing – such as communications networks, global navigation satellite systems (including GPS) and power grids. Synchronization is usually done using GNSS signals but these can be jammed or spoofed to disrupt timing systems.

Holdover clocks require time errors of just a few nanoseconds over a month, which the new NPL clock can deliver. The miniature atomic clock could also be used as a secondary frequency standard for the SI second.

The small size of the clock also lends itself to portable and even mobile applications, according to Walby: “The adaptation of the mini-fountain technology to mobile platforms will be subject of further developments”.

However, the mini-clock is large when compared to more compact or chip-based clocks – which do not perform as well. Therefore, he believes that the technology is more likely to be implemented on ships or ground vehicles than aircraft.

“At a minimum, it should be easily transportable compared to the current solutions of similar performance,” he says.

“Highly innovative”

Atomic-clock expert Elizabeth Donley tells Physics World, “NPL has been highly innovative in recent years in standardizing fountain clock designs and even supplying caesium fountains to other national standards labs and organizations around the world for timekeeping purposes. This new compact rubidium fountain is a continuation of this work and can provide a smaller frequency standard with comparable performance to the larger fountains based on caesium.”

Donley spent more than two decades developing atomic clocks at the US National Institute of Standards and Technology (NIST) and now works as a consultant in the field. She agrees that miniature fountain clocks would be useful for holding-over timing information when time signals are interrupted.

She adds, “Once the international community decides to redefine the second to be based on an optical transition, it won’t matter if you use rubidium or caesium. So I see this work as more of a practical achievement than a ground-breaking one. Practical achievements are what drives progress most of the time.”

The new clock is described in Applied Physics Letters.

The post NPL unveils miniature atomic fountain clock   appeared first on Physics World.

Accelerating digital transformation is the keystone to deterring space war

21 janvier 2026 à 15:00

The United States cannot beat China without accelerating digital transformation: cloud-native services, edge computing, AI/ML-driven autonomy, software-defined payloads, zero-trust cybersecurity, network maneuver and automated DevSecOps pipelines. Digital transformation drives the pace at which militaries convert data into decisions, and decision dominance enables proactive deterrence.  Choices made today about software, data, resilience and partnerships will therefore […]

The post Accelerating digital transformation is the keystone to deterring space war appeared first on SpaceNews.

❌