↩ Accueil

Vue normale

Reçu aujourd’hui — 23 janvier 2026 6.5 📰 Sciences English

Launch operators are the rocket fuel required to galvanize spaceports in Europe

23 janvier 2026 à 14:00
RFA ONE launch SaxaVord

Europe stands on the precipice of launching a satellite from the mainland. Until now, the Guiana Space Centre in South America has operated as Europe’s “gateway to space” but spaceports in SaxaVord and Andøya offer the tantalizing prospect of launches much closer to home. Yet infrastructure alone will not get us there. A launchpad is […]

The post Launch operators are the rocket fuel required to galvanize spaceports in Europe appeared first on SpaceNews.

Hot ancient galaxy cluster challenges current cosmological models

23 janvier 2026 à 12:30

As with people, age in cosmology does not always extrapolate. An early-career politician may be more likely to win a debate with a student than with a seasoned diplomat, but put all three in a room with a toddler and the toddler will almost certainly get their own way – they are following a different set of rules. A team of global collaborators noticed a similar phenomenon when peering at a cluster of developing galaxies from a time when the universe was just a tenth of its current age.

Cosmological theories suggest that such infant clusters should host much cooler and less abundant gas than more mature clusters. But what the researchers saw was at least five times hotter than expected – apparently not abiding by those rules.

“That’s a massive surprise and forces us to rethink how large structures actually form and evolve in the universe,” says first author Dazhi Zhou, a PhD candidate at the University of British Columbia.

Eyes on the past

Looking into distant outer space allows us to peer into the past. The protocluster of developing galaxies that Zhou and collaborators investigated – known as SPT2349–56 – is 12.4 billion light years away, so the light observed from it left home when the universe was just 1.4 billion years old. Light from so far away will be quite faint and hard to detect by the time it reaches us, so the researchers used the Atacama Large Millimeter/submillimeter Array (ALMA) to study SPT2349–56 using a special type of shadow.

As this type of protocluster develops, Zhou explains, the gas around its galaxies  becomes so hot that electrons in the gas interact with, and confer some of their energy upon, passing photons. This leaves light passing through the gas with more photons at the higher energy end of the spectrum and fewer at the lower end. When viewing the cosmic microwave background radiation – the “afterglow” left behind by the Big Bang – this results in a shadow at low energies. This energy shift, discovered by physicists Rashid Sunyaev and Yakov Zeldovich, not only reveals the presence of the protocluster, but the strength of this signature indicates the thermal energy of the gas in the protocluster.

The team’s observations were not easy. “This shadow is actually pretty tiny,” Zhou explains. In addition, there is thermal emission from the dust inside galaxies at radio wavelengths, originally estimated to be 20 times stronger than the Sunyaev–Zeldovich signature. “It really is like finding a needle in a haystack,” he adds. Nonetheless, the team did identify a definite Sunyaev–Zeldovich signature from SPT2349–56, with a thermal energy indicating that it was at least five times hotter than expected – thousands of times hotter than the surface of our Sun.

Time to upgrade?

SPT2349–56 has some quirks that may explain its high thermal energy, including three supermassive black holes shooting out jets of high-energy matter – a known but rare phenomenon for these supermassive black holes. However, simulations that take these outbursts into account as a heating mechanism that’s more efficient and occurs much earlier than heating from gravitational collapse (as current models suggest) still do not give the high temperatures observed, perhaps pointing to gaps in our knowledge of the underlying physics.

Eiichiro Komatsu from the Max-Planck-Institut für Astrophysik describes the work as “a wonderful  measurement”. Although not directly involved in this research, Komatsu has also looked at what the Sunyaev–Zeldovich effect can reveal about the cosmos. “The amount of thermal energy measured by the authors is staggering, yet its origin is a mystery,” he tells Physics World. He suggests these results will motivate further observations of other systems in the early universe.

“We need to be cautious rather than making any big claim,” adds Zhou. This is the first Sunyaev–Zeldovich detection of a protocluster from the first three billion years of the universe’s existence. Next, he aims to study similar protoclusters, and he hopes others will also work to corroborate the observations.

The research is reported in Nature.

The post Hot ancient galaxy cluster challenges current cosmological models appeared first on Physics World.

Reçu hier — 22 janvier 2026 6.5 📰 Sciences English

Open Cosmos advances broadband plans with spectrum once held by Rivada

22 janvier 2026 à 21:45

Open Cosmos deployed two satellites Jan. 22 to activate Ka-band spectrum filings reassigned by Liechtenstein last week, racing to meet deployment deadlines to bring the frequencies into use for sovereign and enterprise broadband.

The post Open Cosmos advances broadband plans with spectrum once held by Rivada appeared first on SpaceNews.

L3Harris to supply imager for Korean geostationary weather satellite

22 janvier 2026 à 18:30

TAHOE CITY, Calif. — L3Harris Technologies will provide the primary imagery for the Korean Meteorological Administration’s (KMA) next-generation geostationary weather satellite. The contract, awarded to L3Harris by Korean aerospace manufacturer […]

The post L3Harris to supply imager for Korean geostationary weather satellite appeared first on SpaceNews.

Laser fusion: Focused Energy charts a course to commercial viability

22 janvier 2026 à 16:01

This episode of the Physics World Weekly podcast features a conversation with the plasma physicist Debbie Callahan who is chief strategy officer at Focused Energy – a California and Germany based fusion-energy startup. Prior to that she spent 35 years working at the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory in the US.

Focused Energy is developing a commercial system for generating energy from the laser-driven fusion of hydrogen isotopes. Callahan describes LightHouse, which is the company’s design for a laser-fusion power plant, and Pearl, which is the firm’s deuterium–tritium fuel capsule.

Callahan talks about the challenges and rewards of working in the fusion industry and also calls on early-career physicists to consider careers in this burgeoning sector.

The post Laser fusion: Focused Energy charts a course to commercial viability appeared first on Physics World.

Fuel cell catalyst requirements for heavy-duty vehicle applications

22 janvier 2026 à 12:25

Heavy-duty vehicles (HDVs) powered by hydrogen-based proton-exchange membrane (PEM) fuel cells offer a cleaner alternative to diesel-powered internal combustion engines for decarbonizing long-haul transportation sectors. The development path of sub-components for HDV fuel-cell applications is guided by the total cost of ownership (TCO) analysis of the truck.

TCO analysis suggests that the cost of the hydrogen fuel consumed over the lifetime of the HDV is more dominant because trucks typically operate over very high mileages (~a million miles) than the fuel cell stack capital expense (CapEx). Commercial HDV applications consume more hydrogen and demand higher durability, meaning that TCO is largely related to the fuel-cell efficiency and durability of catalysts.

This article is written to bridge the gap between the industrial requirements and academic activity for advanced cathode catalysts with an emphasis on durability. From a materials perspective, the underlying nature of the carbon support, Pt-alloy crystal structure, stability of the alloying element, cathode ionomer volume fraction, and catalyst–ionomer interface play a critical role in improving performance and durability.

We provide our perspective on four major approaches, namely, mesoporous carbon supports, ordered PtCo intermetallic alloys, thrifting ionomer volume fraction, and shell-protection strategies that are currently being pursued. While each approach has its merits and demerits, their key developmental needs for future are highlighted.

Nagappan Ramaswamy

Nagappan Ramaswamy joined the Department of Chemical Engineering at IIT Bombay as a faculty member in January 2025. He earned his PhD in 2011 from Northeastern University, Boston specialising in fuel cell electrocatalysis.

He then spent 13 years working in industrial R&D – two years at Nissan North American in Michigan USA focusing on lithium-ion batteries, followed by 11 years at General Motors in Michigan USA focusing on low-temperature fuel cells and electrolyser technologies. While at GM, he led two multi-million-dollar research projects funded by the US Department of Energy focused on the development of proton-exchange membrane fuel cells for automotive applications.

At IIT Bombay, his primary research interests include low-temperature electrochemical energy-conversion and storage devices such as fuel cells, electrolysers and redox-flow batteries involving materials development, stack design and diagnostics.

The post Fuel cell catalyst requirements for heavy-duty vehicle applications appeared first on Physics World.

Tomorrow.io unveils DeepSky: constellation of large satellites and instruments

22 janvier 2026 à 14:00

SAN FRANCISCO – Weather intelligence startup Tomorrow.io unveiled DeepSky, a satellite constellation designed to refine atmospheric forecasts by gathering the vast quantities of data needed to feed artificial intelligence models. […]

The post Tomorrow.io unveils DeepSky: constellation of large satellites and instruments appeared first on SpaceNews.

❌