↩ Accueil

Vue normale

Reçu hier — 1 février 2026 6.5 📰 Sciences English

With attention on orbital data centers, the focus turns to economics

1 février 2026 à 17:43

One of the biggest questions in the tech sector has been if AI is the future, where does all the infrastructure go? Some space industry leaders — including Elon Musk and Jeff Bezos — believe the answer could be in orbit, via space-based data centers. That idea has gained attention in recent weeks. Musk is […]

The post With attention on orbital data centers, the focus turns to economics appeared first on SpaceNews.

Reçu — 31 janvier 2026 6.5 📰 Sciences English

Cavity-based X-ray laser delivers high-quality pulses

31 janvier 2026 à 16:00

Physicists in Germany have created a new type of X-ray laser that uses a resonator cavity to improve the output of a conventional X-ray free electron laser (XFEL). Their proof-of-concept design delivers X-ray pulses that are more monochromatic and coherent than those from existing XFELs.

In recent decades, XFELs have delivered pulses of monochromatic and coherent X-rays for a wide range of science including physics, chemistry, biology and materials science.

Despite their name, XFELs do not work like conventional lasers. In particular, there is no gain medium or resonator cavity. Instead, XFELs rely on the fact that when a free electron is accelerated, it will emit electromagnetic radiation. In an XFEL, pulses of high-energy electrons are sent through an undulator, which deflects the electrons back and forth. These wiggling electrons radiate X-rays at a specific energy. As the X-rays and electrons travel along the undulator, they interact in such a way that the emitted X-ray pulse has a high degree of coherence.

While these XFELs have proven very useful, they do not deliver radiation that is as monochromatic or as coherent as radiation from conventional lasers. One reason why conventional lasers perform better is that the radiation is reflected back and forth many times in a mirrored cavity that is tuned to resonate at a specific frequency – whereas XFEL radiation only makes one pass through an undulator.

Practical X-ray cavities, however, are difficult to create. This is because X-rays penetrate deep into materials, where they are usually absorbed – making reflection with conventional mirrors impossible.

Crucial overlap

Now, researchers working at the European XFEL at DESY in Germany have created a proof-of-concept hybrid system that places an undulator within a mirrored resonator cavity. X-ray pulses that are created in the undulator are directed at a downstream mirror and reflected back to a mirror upstream of the undulator. The X-ray pulses are then reflected back downstream through the undulator. Crucially, a returning X-ray pulse overlaps with a subsequent electron pulse in the undulator, amplifying the X-ray pulse. As a result, the X-ray pulses circulating within the cavity quickly become more monochromatic and more coherent than pulses created by an undulator alone.

The team solved the mirror challenge by using diamond crystals that achieve the Bragg reflection of X-rays with a specific frequency. These are used at either end of the cavity in conjunction with Kirkpatrick–Baez mirrors, which help focus the reflected X-rays back into the cavity.

Some of the X-ray radiation circulating in the cavity is allowed to escape downstream, providing a beam of monochromatic and coherent X-ray pulses. They have called their system X-ray Free-Electron Laser Oscillator (XFELO). The cavity is about 66 m long.

Narrow frequency range

DESY accelerator scientist Patrick Rauer explains, “With every round trip, the noise in the X-ray pulse gets less and the concentrated light more defined”. Rauer pioneered the design of the cavity in his PhD work and is now the DESY lead on its implementation. “It gets more stable and you start to see this single, clear frequency – this spike.” Indeed, the frequency width of XFELO X-ray pulses is about 1% that of pulses that are created by the undulators alone

Ensuring the overlap of electron and X-pulses within the cavity was also a significant challenge. This required a high degree of stability within the accelerator that provides electron pulses to XFELO. “It took years to bring the accelerator to that state, which is now unique in the world of high-repetition-rate accelerators”, explains Rauer.

Team member Harald Sinn says, “The successful demonstration shows that the resonator principle is practical to implement”. Sinn is head of  European XFEL’s instrumentation department and he adds, “In comparison with methods used up to now, it delivers X-ray pulses with a very narrow wavelength as well as a much higher stability and coherence.”

The team will now work towards improving the stability of XFELO so that in the future it can be used to do experiments by European XFEL’s research community.

XFELO is described in Nature.

The post Cavity-based X-ray laser delivers high-quality pulses appeared first on Physics World.

Reçu — 30 janvier 2026 6.5 📰 Sciences English

The physics of an unethical daycare model that uses illness to maximize profits

30 janvier 2026 à 15:07

When I had two kids going through daycare, or nursery as we call it in the UK, every day seemed like a constant fight with germs and illness. After all, at such a young age kids still have a developing immune system and are not exactly hot on personal hygiene.

That same dilemma faced mathematician Lauren Smith from the University of Auckland. She has two children at a “wonderful daycare centre” who often fall ill. As many parents juggling work and parenting will understand, Smith is frequently faced with the issue of whether her kids are well enough to attend daycare.

Smith then thought about how an unethical daycare centre might take advantage of this to maximize its profits – under the assumption that if there are not enough children attending (who still pay) then staff get sent home without pay, and also don’t get sick pay themselves.

“It occurred to me that a sick kid attending daycare could actually be financially beneficial to the centre, while clearly being a detriment to the wellbeing of the other children as well as the staff and the broader community,” Smith told Physics World.

For a hypothetical daycare centre that is solely focused on making as much money as possible, Smith realized that full attendance of sick children is not optimal financially as this requires maximal staffing at all times, whereas zero attendance of sick children does not give an opportunity for the disease to spread such that other children are then sent home.

But in between these two extremes, Smith thought there should be an optimal attendance rate so that the disease is still able to spread and some children – and staff – are sent home. “As a mathematician I knew I had the tools to find it,” adds Smith.

Model behaviour

Using the so-called Susceptible-Infected-Recovered model for 100 children, a teacher to child ratio of 1:6 and a recovery rate from illness of 10 days, Smith found that the more infectious the disease, the lower the optimal attendance rate for sick children is, and so the more savings the unethical daycare centre can make.

In other words, the more infectious a disease, fewer ill children are required to attend to spread it around, and so can keep more of them – and importantly staff – at home while still making sure it still spreads to non-infected kids.

For a measles outbreak with a basic reproductive number of 12-18, for example, the model resulted in a potential staff saving of 90 working days, whereas for seasonal flu with a basic reproductive rate of 1.2 to 1.3, the potential staff savings is 4.4 days.

Smith writes in the paper that the work is “not intended as a recipe for unethical daycare centre” but is rather to illustrate the financial incentive that exists for daycare centres to propagate diseases among children, which would lead to more infections of at-risk populations in the wider community.

“I hope that as well as being an interesting topic, it can show that mathematics itself is interesting and is useful for describing the real world,” adds Smith.

The post The physics of an unethical daycare model that uses illness to maximize profits appeared first on Physics World.

Making the unprecedented EU Space Act effective for all

30 janvier 2026 à 13:00
Ariane 6 liftoff

The EU Space Act was formally proposed by the European Commission (EC) on June 25, 2025. While it doesn’t aim to codify all European Union (EU) space activities, it does address several key issues that EU officials have determined are increasingly important to the continent’s concerns: safety, through tracking space objects and mitigating space debris; resilience, […]

The post Making the unprecedented EU Space Act effective for all appeared first on SpaceNews.

❌