A surprising critical state emerges in active nematic materials
Nematics are materials made of rod‑like particles that tend to align in the same direction. In active nematics, this alignment is constantly disrupted and renewed because the particles are driven by internal biological or chemical energy. As the orientation field twists and reorganises, it creates topological defects-points where the alignment breaks down. These defects are central to the collective behaviour of active matter, shaping flows, patterns, and self‑organisation.
In this work, the researchers identify an active topological phase transition that separates two distinct regimes of defect organisation. As the system approaches this transition from below, the dynamics slow dramatically: the relaxation of defect density becomes sluggish, fluctuations in the number of defects grow in amplitude and lifetime, and the system becomes increasingly sensitive to small changes in activity. At the critical point, defects begin to interact over long distances, with correlation lengths that grow with system size. This behaviour produces a striking dual‑scaling pattern, defect fluctuations appear uniform at small scales but become anti‑hyperuniform at larger scales, meaning that the number of defects varies far more than expected from a random distribution.
A key finding is that this anti‑hyperuniformity originates from defect clustering. Rather than forming ordered structures or undergoing phase separation, defects tend to appear near existing defects, creating multiscale clusters. This distinguishes the transition from well‑known defect‑unbinding processes such as the Berezinskii-Kosterlitz-Thouless transition in passive nematics or the nematic-isotropic transition in screened active systems. Above the critical activity, the system enters a defect‑laden turbulent state where defects are more uniformly distributed and correlations become short‑ranged and negative.
The researchers confirm these behaviours experimentally using large‑field‑of‑view measurements of endothelial cell monolayers which are the cells that line blood vessels. The same dual‑scaling behaviour, long‑range correlations, and clustering appear in these living tissues, demonstrating that the transition is robust across system sizes, parameter variations, frictional damping, and boundary conditions.
Read the full article
Anti-hyperuniform critical states of active topological defects
Simon Guldager Andersen et al 2025 Rep. Prog. Phys. 88 108101
Do you want to learn more about this topic?
Active phase separation: new phenomenology from non-equilibrium physics M E Cates and C Nardini (2025)
The post A surprising critical state emerges in active nematic materials appeared first on Physics World.