↩ Accueil

Vue normale

Is our embrace of AI naïve and could it lead to an environmental disaster?

26 janvier 2026 à 12:00

According to today’s leading experts in artificial intelligence (AI), this new technology is a danger to civilization. A statement on AI risk published in 2023 by the US non-profit Center for AI Safety warned that mitigating the risk of extinction from AI must now be “a global priority”, comparing it to other societal-scale dangers such as pandemics and nuclear war. It was signed by more than 600 people, including the winner of the 2024 Nobel Prize for Physics and so-called “Godfather of AI” Geoffrey Hinton. In a speech at the Nobel banquet after being awarded the prize, Hinton noted that AI may be used “to create terrible new viruses and horrendous lethal weapons that decide by themselves who to kill or maim”.

Despite signing the letter, Sam Altman of OpenAI, the firm behind ChatGPT, has stated that the company’s explicit ambition is to create artificial general intelligence (AGI) within the next few years, to “win the AI-race”. AGI is predicted to surpass human cognitive capabilities for almost all tasks, but the real danger is if or when AGI is used to generate more powerful versions of itself. Sometimes called “superintelligence”, this would be impossible to control. Companies do not want any regulation of AI and their business model is for AGI to replace most employees at all levels. This is how firms are expected to benefit from AI, since wages are most companies’ biggest expense.

AI, to me, is not about saving the world, but about a handful of people wanting to make enormous amounts of money from it. No-one knows what internal mechanism makes even today’s AI work – just as one cannot find out what you think from how the neurons in your brain are firing. If we don’t even understand today’s AI models, how are we going to understand – and control – the more powerful models that already exist or are planned in the near future?

AI has some practical benefits but too often is put to mostly meaningless, sometimes downright harmful, uses such as cheating your way through school or creating disinformation and fake videos online. What’s more, an online search with the help of AI requires at least 10 times as much energy as a search without AI. It already uses 5% of all electricity in the US and by 2028 this figure is expected to be 15%, which will be over a quarter of all US households’ electricity consumption. AI data servers are more than 50% as carbon intensive as the rest of the US’s electricity supply.

Those energy needs are why some tech companies are building AI data centres – often under confidential, opaque agreements – very quickly for fear of losing market share. Indeed, the vast majority of those centres are powered by fossil-fuel energy sources – completely contrary to the Paris Agreement to limit global warming. We must wisely allocate Earth’s strictly limited resources, with what is wasted on AI instead going towards vital things.

To solve the climate crisis, there is definitely no need for AI. All the solutions have already been known for decades: phasing out fossil fuels, reversing deforestation, reducing energy and resource consumption, regulating global trade, reforming the economic system away from its dependence on growth. The problem is that the solutions are not implemented because of short-term selfish profiteering, which AI only exacerbates.

Playing with fire

AI, like all other technologies, is not a magic wand and, as Hinton says, potentially has many negative consequences. It is not, as the enthusiasts seem to think, a magical free resource that provides output without input (and waste). I believe we must rethink our naïve, uncritical, overly fast, total embrace of AI. Universities are known for wise reflection, but worryingly they seem to be hurrying to jump on the AI bandwagon. The problem is that the bandwagon may be going in the wrong direction or crash and burn entirely.

Why then should universities and organizations send their precious money to greedy, reckless and almost totalitarian tech billionaires? If we are going to use AI, shouldn’t we create our own AI tools that we can hopefully control better? Today, more money and power is transferred to a few AI companies that transcend national borders, which is also a threat to democracy. Democracy only works if citizens are well educated, committed, knowledgeable and have influence.

AI is like using a hammer to crack a nut. Sometimes a hammer may be needed but most of the time it is not and is instead downright harmful. Happy-go-lucky people at universities, companies and throughout society are playing with fire without knowing about the true consequences now, let alone in 10 years’ time. Our mapped-out path towards AGI is like a zebra on the savannah creating an artificial lion that begins to self-replicate, becoming bigger, stronger, more dangerous and more unpredictable with each generation.

Wise reflection today on our relationship with AI is more important than ever.

The post Is our embrace of AI naïve and could it lead to an environmental disaster? appeared first on Physics World.

New sensor uses topological material to detect helium leaks

26 janvier 2026 à 10:00

A new sensor detects helium leaks by monitoring how sound waves propagate through a topological material – no chemical reactions required. Developed by acoustic scientists at Nanjing University, China, the innovative, physics-based device is compact, stable, accurate and capable of operating at very low temperatures.

Helium is employed in a wide range of fields, including aerospace, semiconductor manufacturing and medical applications as well as physics research. Because it is odourless, colourless, and inert, it is essentially invisible to traditional leak-detection equipment such as adsorption-based sensors. Specialist helium detectors are available, but they are bulky, expensive and highly sensitive to operating conditions.

A two-dimensional acoustic topological material

The new device created by Li Fan and colleagues at Nanjing consists of nine cylinders arranged in three sub-triangles with tubes in between the cylinders. The corners of the sub-triangles touch and the tubes allow air to enter the device. The resulting two-dimensional system has a so-called “kagome” structure and is an example of a topological material – that is, one that contains special, topologically protected, states that remain stable even if the bulk structure contains minor imperfections or defects. In this system, the protected states are the corners.

To test their setup, the researchers placed speakers under the corners that send sound waves into the structure and make the gas within it vibrate at a certain frequency (the resonance frequency). When they replaced the air in the device with helium, the sound waves travelled faster, changing the vibration frequency. Measuring this shift in frequency enabled the researchers to calculate the concentration of helium in the device.

Many advantages over traditional gas sensors

Fan explains that the device works because the interface/corner states are impacted by the properties of the gas within it. This mechanism has many advantages over traditional gas sensors. First, it does not rely on chemical reactions, making it ideal for detecting inert gases like helium. Second, the sensor is not affected by external conditions and can therefore work at extremely low temperatures – something that is challenging for conventional sensors that contain sensitive materials. Third, its sensitivity to the presence of helium does not change, meaning it does not need to be recalibrated during operation. Finally, it detects frequency changes quickly and rapidly returns to its baseline once helium levels decrease.

As well as detecting helium, Fan says the device can also pinpoint the direction a gas leak is coming from. This is because when helium begins to fill the device, the corner closest to the source of the gas is impacted first. Each corner thus acts as an independent sensing point, giving the device a spatial sensing capability that most traditional detectors lack.

Other gases could be detected

Detecting helium leaks is important in fields such as semiconductor manufacturing, where the gas is used for cooling, and in medical imaging systems that operate at liquid helium temperatures. “We think our work opens an avenue for inert gas detection using a simple device and is an example of a practical application for two-dimensional acoustic topological materials,” says Fan.

While the new sensor was fabricated to detect helium, the same mechanism could also be employed to detect other gases such as hydrogen, he adds.

Spurred on by these promising preliminary results, which they report in Applied Physics Letters, the researchers plan to extend their fabrication technique to create three-dimensional acoustic topological structures. “These could be used to orientate the corner points so that helium can be detected in 3D space,” says Fan. “Ultimately, we are trying to integrate our system into a portable structure that can be deployed in real-world environments without complex supporting equipment.,” he tells Physics World.

The post New sensor uses topological material to detect helium leaks appeared first on Physics World.

❌