↩ Accueil

Vue normale

STRANGER THINGS – L’Ombre de Hawkins…

18 novembre 2025 à 17:01

Non, on ne parle pas ici de la prochaine saison de la série Stranger Things qui arrive sur Netflix le 27 novembre prochain… mais bien d’une enquête de chez Dossiers Criminels… En effet, le désormais célèbre jeu d’enquêtes (on les a toutes faites!), s’est associé à Netflix pour proposer une nouvelle intrigue dans l’univers de la série avec une histoire inédite…

Quelque chose dérange l’équilibre fragile de la ville de Hawkins… A nous de parcourir la ville, mener l’enquête et élucider le mystère… Mais au début, on ne sait pas vraiment ce qui se passe… qui a disparu? Quand? Où?… Alors, quand on connait la série on se doute bien de ce qui se trame… mais l’intrigue se dévoile au fur et à mesure, enveloppe par enveloppe…

En effet, le jeu s’articule autour d’un site web qui fait office d’ordi des années 80 dans lequel on aura des infos et autre documents à lire ou bien des choses à écouter grâce à un walkman… et c’est particulièrement en progressant sur la carte de Hawkins fournie qu’on pourra avancer, en proposant un lieu sur la carte via le site web, on pourra débloquer la suite…

Bien sûr, comme dans toute bonne enquête Dossiers Criminels, les enveloppes contiennent tout un tas de documents ou même objets… On trouve des coupures de journaux, des photos, des brochures, etc…

Par rapport aux enquêtes qu’on connait dans la collection, il y a moins à lire ici et les documents sont plus faciles à appréhender car davantage visuels. Aussi, on pourra résoudre pas mal d’énigmes à base de signes ou autres visuels à bien analyser sous tous les angles.

L’enquête, d’une difficulté de 2 sur 5 est ainsi très abordable à tous types de joueuses et joueurs. La progression est rythmée et plutôt addictive avec une bonne immersion dans l’univers de Strangers Things par ses visuels et l’ambiance sonore de certains messages. Un effort particulier a été fait en ce qui concerne la réalisation des documents avec beaucoup d’allusions aux personnages de la série.

Il vous faudra environ 1h30 pour terminer cette enquête, idéalement à 3 joueurs ou plus (à partir de 14 ans). L’enquête est accessible et bien ficelée avec une réalisation de haute volée pour une immersion dans l’univers qui ravira les fans (il est même parfois question de jeu de rôles…). Si vous ne connaissez pas les Dossiers Criminels c’est un excellent moyen pour découvrir ces enquêtes à faire à la maison!

Cet article STRANGER THINGS – L’Ombre de Hawkins… est apparu en premier sur Insert Coin.

Scientists realize superconductivity in traditional semiconducting material

18 novembre 2025 à 17:00
Superconducting germanium:gallium trilayer
Coherent crystalline interfaces Atomic-resolution image of a superconducting germanium:gallium (Ge:Ga) trilayer with alternating Ge:Ga and silicon layers demonstrating precise control of atomic interfaces. (Courtesy: Salva Salmani-Rezaie)

The ability to induce superconductivity in materials that are inherently semiconducting has been a longstanding research goal. Improving the conductivity of semiconductor materials could help develop quantum technologies with a high speed and energy efficiency, including superconducting quantum bits (qubits) and cryogenic CMOS control circuitry. However, this task has proved challenging in traditional semiconductors – such as silicon or germanium – as it is difficult to maintain the optimal superconductive atomic structure.

In a new study, published in Nature Nanotechnology, researchers have used molecular beam epitaxy (MBE) to grow gallium-hyperdoped germanium films that retain their superconductivity. When asked about the motivation for this latest work, Peter Jacobson from the University of Queensland tells Physics World about his collaboration with Javad Shabani from New York University.

“I had been working on superconducting circuits when I met Javad and discovered the new materials their team was making,” he explains. “We are all trying to understand how to control materials and tune interfaces in ways that could improve quantum devices.”

Germanium: from semiconductor to superconductor

Germanium is a group IV element, so its properties bridge those of both metals and insulators. Superconductivity can be induced in germanium by manipulating its atomic structure to introduce more electrons into the atomic lattice. These extra electrons interact with the germanium lattice to create electron pairs that move without resistance, or in other words, they become superconducting.

Hyperdoping germanium (at concentrations well above the solid solubility limit) with gallium induces a superconducting state. However, this material is traditionally unstable due to the presence of structural defects, dopant clustering and poor thickness control. There have also been many questions raised as to whether these materials are intrinsically superconducting, or whether it is actually gallium clusters and unintended phases that are solely responsible for the superconductivity of gallium-doped germanium.

Considering these issues and looking for a potential new approach, Jacobson notes that X-ray absorption measurements at the Australian Synchrotron were “the first real sign” that Shabani’s team had grown something special. “The gallium signal was exceptionally clean, and early modelling showed that the data lined up almost perfectly with a purely substitutional picture,” he explains. “That was a genuine surprise. Once we confirmed and extended those results, it became clear that we could probe the mechanism of superconductivity in these films without the usual complications from disorder or spurious phases.”

Epitaxial growth improves superconductivity control

In a new approach, Jacobson, Shabani and colleagues used MBE to grow the crystals instead of relying on ion implantation techniques, allowing the germanium to by hyperdoped with gallium. Using MBE forces the gallium atoms to replace germanium atoms within the crystal lattice at levels much higher than previously seen. The process also provided better control over parasitic heating during film growth, allowing the researchers to achieve the structural precision required to understand and control the superconductivity of these germanium:gallium (Ge:Ga) materials, which were found to become superconducting at 3.5 K with a carrier concentration of 4.15 × 1021 holes/cm3. The critical gallium dopant threshold to achieve this was 17.9%.

Using synchrotron-based X-ray absorption, the team found that the gallium dopants were substitutionally incorporated into the germanium lattice and induced a tetragonal distortion to the unit cell. Density functional theory calculations showed that this causes a shift in the Fermi level into the valence band and flattens electronic bands. This suggests that the structural order of gallium in the germanium lattice creates a narrow band that facilitates superconductivity in germanium, and that this superconductivity arises intrinsically in the germanium, rather than being governed by defects and gallium clusters.

The researchers tested trilayer heterostructures – Ge:Ga/Si/Ge:Ga and Ge:Ga/Ge/Ge:Ga – as proof-of-principle designs for vertical Josephson junction device architectures. In the future, they hope to develop these into fully fledged Josephson junction devices.

Commenting on the team’s future plans for this research, Jacobson concludes: “I’m very keen to examine this material with low-temperature scanning tunnelling microscopy (STM) to directly measure the superconducting gap, because STM adds atomic-scale insights that complement our other measurements and will help clarify what sets hyperdoped germanium apart”.

The post Scientists realize superconductivity in traditional semiconducting material appeared first on Physics World.

Better coffee, easier parking and more: the fascinating physics of daily life

18 novembre 2025 à 15:20

It is book week here at Physics World and over the course of three days we are presenting conversations with the authors of three fascinating and fun books about physics. First up is my Physics World colleague Michael Banks, whose book Physics Around the Clock: Adventures in the Science of Everyday Living starts with your morning coffee and ends with a formula for making your evening television viewing more satisfying.

As well as the rich physics of coffee, we chat about strategies for finding the best parking spot and the efficient boarding of aeroplanes. If you have ever wondered why a runner’s ponytail swings from side-to-side when they reach a certain speed – we have the answer for you.

Other daily mysteries that we explore include how a hard steel razor blade can be dulled by cutting relatively soft hairs and why quasiparticles called “jamitons” are helping physicists understand the spontaneous appearance of traffic jams. And a warning for squeamish listeners, we do talk about the amazing virus-spreading capabilities of a flushing toilet.

APS logo

 

This episode is supported by the APS Global Physics Summit, which takes place on 15–20 March, 2026, in Denver, Colorado, and online.

The post Better coffee, easier parking and more: the fascinating physics of daily life appeared first on Physics World.

Amsterdam, l’île confetti aux avant-postes de la recherche

18 novembre 2025 à 13:39
Début 2025, un gigantesque incendie a ravagé plus de la moitié de l’île Amsterdam. De retour sur place plusieurs mois après, des scientifiques tentent d’en estimer les conséquences sur ce havre de biodiversité à la croisée de l’océan Indien et de l’Antarctique.

Marstek lance Venus E 3.0, la batterie qui récupère enfin tout votre surplus solaire

18 novembre 2025 à 13:51

Marstek lance Venus E 3.0, la batterie qui récupère enfin tout votre surplus solaire

Marstek s’attaque à l’un des plus grands gâchis du photovoltaïque résidentiel : le surplus d’énergie perdu chaque jour faute de solution de stockage adaptée. Avec sa nouvelle batterie Venus E 3.0, la marque propose une réponse étonnamment simple : il suffit de la brancher sur une prise 230 V. Pas besoin de changer d’onduleur, ni de toucher à l’installation existante.

Une fois connectée, la Venus E 3.0 absorbe automatiquement l’excédent d’électricité produit la journée pour le restituer le soir. Elle s’appuie sur une compatibilité étendue avec la majorité des compteurs intelligents afin d’éviter toute injection réseau, assurant ainsi une autoconsommation à 100 % – un argument fort pour les foyers souhaitant optimiser leurs économies.

Mais la force du produit réside surtout dans son mode « AI Optimization » : une gestion intelligente qui planifie en temps réel la charge et la décharge en fonction des habitudes du foyer, du prix de l’électricité ou encore des prévisions météo. L’utilisateur n’a rien à faire : la batterie choisit les moments les plus rentables pour stocker ou restituer l’énergie. Les profils plus techniques pourront toutefois passer en mode manuel et définir eux-mêmes les plages et puissances de charge selon les tarifs horaires.

Marstek

Positionnée à un prix compétitif pour une capacité de 5,12 kWh, la Venus E 3.0 mise également sur la durabilité. Elle s’appuie sur des cellules LFP (Lithium Fer Phosphate) qui supportent plus de 6 000 cycles, soit près de 15 ans d’utilisation. De quoi en faire un investissement fiable, à la fois économique et écologique.

Adaptée à tous les environnements – balcon, garage ou local technique –, la Venus E 3.0 s’inscrit pleinement dans l’ambition de Marstek : rendre le stockage d’énergie plus intelligent, plus sûr et plus accessible. Pour soutenir son expansion en France, la marque s’appuie désormais sur l’agence WEMOOVE, spécialisée dans les nouvelles technologies et le lifestyle.

Fondée en 2009, Marstek est aujourd’hui un acteur international majeur du stockage énergétique, avec une gamme allant des systèmes résidentiels aux batteries portables, en passant par les solutions pour balcons et les piles Li-ion AA/AAA. Présente en Chine, en France, aux États-Unis, au Japon et en Afrique, la marque poursuit un objectif clair : simplifier l’accès à l’énergie propre.

Marstek lance Venus E 3.0, la batterie qui récupère enfin tout votre surplus solaire a lire sur Vonguru.

Cosmic dawn: the search for the primordial hydrogen signal

18 novembre 2025 à 12:00

“This is one of the big remaining frontiers in astronomy,” says Phil Bull, a cosmologist at the Jodrell Bank Centre for Astrophysics at the University of Manchester. “It’s quite a pivotal era of cosmic history that, it turns out, we don’t actually understand.”

Bull is referring to the vital but baffling period in the early universe – from 380,000 years to one billion years after the Big Bang – when its structure went from simple to complex. To lift the veil on this epoch, experiments around the world – from Australia to the Arctic – are racing to find a specific but elusive signal from the earliest hydrogen atoms. This signal could confirm or disprove scientists’ theories of how the universe evolved and the physics that governs it.

Hydrogen is the most abundant element in the universe. As neutral hydrogen atoms change states, they can emit or absorb photons. This spectral transition, which can be stimulated by radiation, produces an emission or absorption radio wave signal with a wavelength of 21 cm. To find out what happened during that early universe, astronomers are searching for these 21 cm photons that were emitted by primordial hydrogen atoms.

But despite more teams joining the hunt every year, no-one has yet had a confirmed detection of this radiation. So who will win the race to find this signal and how is the hunt being carried out?

A blank spot

Let’s first return to about 380,000 years after the Big Bang, when the universe had expanded and cooled to below 3000 K. At this stage, neutral atoms, including atomic hydrogen, could form. Thanks to the absence of free electrons, ordinary matter particles could decouple from light, allowing it to travel freely across the universe. This ancient radiation that permeates the sky is known as the cosmic microwave background (CMB).

But after that we don’t know much about what happened for the next few hundred million years. Meanwhile, the oldest known galaxy MoM-z14 – which existed about 280 million years after the Big Bang – was observed in April 2025 by the James Webb Space Telescope. So there is currently a gap of just under 280 million years in our observations of the early universe. “It’s one of the last blank spots,” says Anastasia Fialkov, an astrophysicist at the Institute of Astronomy of the University of Cambridge.

This “blank spot” is a bridge between the early, simple universe and today’s complex structured cosmos. During this early epoch, the universe went from being filled with a thick cloud of neutral hydrogen, to being diversely populated with stars, black holes and everything in between. It covers the end of the cosmic dark ages, the cosmic dawn, and the epoch of reionization – and is arguably one of the most exciting periods in our universe’s evolution.

During the cosmic dark ages, after the CMB flooded the universe, the only “ordinary” matter (made up of protons, neutrons and electrons) was neutral hydrogen (75% by mass) and neutral helium (25%), and there were no stellar structures to provide light. It is thought that gravity then magnified any slight fluctuations in density, causing some of this primordial gas to clump and eventually form the first stars and galaxies – a time called the cosmic dawn. Next came the epoch of reionization, when ultraviolet and X-ray emissions from those first celestial objects heated and ionized the hydrogen atoms, turning the neutral gas into a charged plasma of electrons and protons.

Stellar imprint

The 21 cm signal astronomers are searching for was produced when the spectral transition was excited by collisions in the hydrogen gas during the dark ages and then by the first photons from the first stars during the cosmic dawn. However, the intensity of the 21 cm signal can only be measured against the CMB, which acts as a steady background source of 21 cm photons.

When the hydrogen was colder than the background radiation, there were few collisions, and the atoms would have absorbed slightly more 21 cm photons from the CMB than they emitted themselves. The 21 cm signal would appear as a deficit, or absorption signal, against the CMB. But when the neutral gas was hotter than the CMB, the atoms would emit more photons than they absorbed, causing the 21 cm signal to be seen as a brighter emission against the CMB. These absorption and emission rates depend on the density and temperature of the gas, and the timing and intensity of radiation from the first cosmic sources. Essentially, the 21 cm signal became imprinted with how those early sources transformed the young universe.

One way scientists are trying to observe this imprint is to measure the average – or “global” – signal across the sky, looking at how it shifts from absorption to emission compared to the CMB. Normally, a 21 cm radio wave signal has a frequency of about 1420 MHz. But this ancient signal, according to theory, has been emitted and absorbed at different intensities throughout this cosmic “blank spot”, depending on the universe’s evolutionary processes at the time. The expanding universe has also stretched and distorted the signal as it travelled to Earth. Theories predict that it would now be in the 1 to 200 MHz frequency range – with lower frequencies corresponding to older eras – and would have a wavelength of metres rather than centimetres.

Importantly, the shape of the global 21 cm signal over time could confirm the lambda-cold dark matter (ΛCDM) model, which is the most widely accepted theory of the cosmos; or it could upend it. Many astronomers have dedicated their careers to finding this radiation, but it is challenging for a number of reasons.

Unfortunately, the signal is incredibly faint. Its brightness temperature, which is measured as the change in the CMB’s black body temperature (2.7 K), will only be in the region of 0.1 K.

1 The 21 cm signal across cosmic time

The 21 cm signal across cosmic time
(a CC BY 4.0 The Royal Society/A Fialkov et al. 2024 Philos. Trans. A Math. Phys. Eng. Sci. 382 20230068; b Copyright Springer Nature. Reused with permission from E de Lera Acedo et al. 2022 Nature Astronomy 6 984)

A simulation of the sky-averaged (global) signal as a function of time (horizontal) and space (vertical). b A typical model of the global 21 cm line with the main cosmic events highlighted. Each experiment searching for the global 21 cm signal focuses on a particular frequency band. For example, the Radio Experiment for the Analysis of Cosmic Hydrogen (REACH) is looking at the 50–170 MHz range (blue).

There is also no single source of this emission, so, like the CMB, it permeates the universe. “If it was the only signal in the sky, we would have found it by now,” says Eloy de Lera Acedo, head of Cavendish Radio Astronomy and Cosmology at the University of Cambridge. But the universe is full of contamination, with the Milky Way being a major culprit. Scientists are searching for 0.1 K in an environment “that’s a million times brighter”, he explains.

And even before this signal reaches the radio-noisy Earth, it has to travel through the atmosphere, which further distorts and contaminates it. “It’s a very difficult measurement,” says Rigel Cappallo, a research scientist at the MIT Haystack Observatory. “It takes a really, really well calibrated instrument that you understand really well, plus really good modelling.”

Seen but not confirmed

In 2018 the Experiment to Detect the Global EoR Signature (EDGES) – a collaboration between Arizona State University and MIT Haystack Observatory – hit the headlines when it claimed to have detected the global 21 cm signal (Nature 555 67).

The EDGES instrument is a dipole antenna, which resembles a ping-pong table with a gap in the middle (see photo at top of article for the 2024 set-up). It is mounted on a large metal groundsheet, which is about 30 × 30 m. Its ground-breaking observation was made at a remote site in western Australia, far from radio frequency interference.

But in the intervening seven years, no-one else has been able to replicate the EDGES results.

The spectrum dip that EDGES detected was very different from what theorists had expected. “There is a whole family of models that are predicted by the different cosmological scenarios,” explains Ravi Subrahmanyan, a research scientist at Australia’s national science agency CSIRO. “When we take measurements, we compare them with the models, so that we can rule those models in or out.”

In general, the current models predict a very specific envelope of signal possibilities (see figure 1). First, they anticipate an absorption dip in brightness temperature of around 0.1 to 0.2 K, caused by the temperature difference between the cold hydrogen gas (in an expanding universe) and the warmer CMB. Then, a speedy rise and photon emission is predicted as the gas starts to warm when the first stars form, and the signal should spike dramatically when the first X-ray binary stars fire up and heat up the surrounding gas. The signal is then expected to fade as the epoch of reionization begins, because ionized particles cannot undergo the spectral transition. With models, scientists theorize when this happened, how many stars there were, and how the cosmos unfurled.

2 Weird signal

The 21 cm signals predicted by standard cosmology (coloured lines
(Courtesy: SARAS Team)

The 21 cm signals predicted by current cosmology models (coloured lines) and the detection by the EDGES experiment (dashed black line).

“It’s just one line, but it packs in so many physical phenomena,” says Fialkov, referring to the shape of the 21 cm signal’s brightness temperature over time. The timing of the dip, its gradient and magnitude all represent different milestones in cosmic history, which affect how it evolved.

The EDGES team, however, reported a dip of more than double the predicted size, at about 78 MHz (see figure 2). While the frequency was consistent with predictions, the very wide and deep dip of the signal took the community by surprise.

“It would be a revolution in physics, because that signal will call for very, very exotic physics to explain it,” says de Lera Acedo. “Of course, the first thing we need to do is to make sure that that is actually the signal.”

A spanner in the works

The EDGES claim has galvanized the cosmology community. “It set a cat among the pigeons,” says Bull. “People realized that, actually, there’s some very exciting science to be done here.” Some groups are trying to replicate the EDGES observation, while others are trying new approaches to detect the signal that the models promise.

The Radio Experiment for the Analysis of Cosmic Hydrogen (REACH) – a collaboration between the University of Cambridge and Stellenbosch University in South Africa – focuses on the 50–170 MHz frequency range. Sitting on the dry and empty plains of South Africa’s Northern Cape, it is targeting the EDGES observation (Nature Astronomy 6 984).

A large metal mesh topped with two antennas, in a desert
The race to replicate REACH went online in the Karoo region of South Africa in December 2023. (Courtesy: Saurabh Pegwal, REACH collaboration)

In this radio-quiet environment, REACH has set up two antennas: one looks like EDGES’ dipole ping-pong table, while the other is a spiral cone. They sit on top of a giant metallic mesh – the ground plate – in the shape of a many-pointed star, which aims to minimize reflections from the ground.

Hunting for this signal “requires precision cosmology and engineering”, says de Lera Acedo, the principal investigator on REACH. Reflections from the ground or mesh, calibration errors, and signals from the soil, are the kryptonite of cosmic dawn measurements. “You need to reduce your systemic noise, do better analysis, better calibration, better cleaning [to remove other sources from observations],” he says.

Desert, water, snow

Another radio telescope, dubbed the Shaped Antenna measurement of the background Radio Spectrum (SARAS) – which was established in the late 2000s by the Raman Research Institute (RRI) in Bengaluru, India – has undergone a number of transformations to reduce noise and limit other sources of radiation. Over time, it has morphed from a dipole on the ground to a metallic cone floating on a raft. It is looking at 40 to 200 MHz (Exp. Astron. 51 193).

After the EDGES claim, SARAS pivoted its attention to verifying the detection, explains Saurabh Singh, a research scientist at the RRI. “Initially, we were not able to get down to the required sensitivity to be able to say anything about their detection,” he explains. “That’s why we started floating our radiometer on water.” Buoying the experiment reduces ground contamination and creates a more predictable surface to include in calculations.

Four photos of the SARAS telescope with different designs and in different locations
Floating telescope Evolution of the SARAS experiment and sites up to 2020. The third edition of the telescope, SARAS 3, was deployed on lakes to further reduce radio interference. (Courtesy: SARAS Team)

Using data from their floating radiometer, in 2022 Singh and colleagues disfavoured EDGES’ claim (Nature Astronomy 6 607), but for many groups the detection still remains a target for observations.

While SARAS has yet to detect a cosmic-dawn signal of its own, Singh says that non-detection is also an important element of finding the global 21 cm signal. “Non-detection gives us an opportunity to rule out a lot of these models, and that has helped us to reject a lot of properties of these stars and galaxies,” he says.

Raul Monsalve Jara – a cosmologist at the University of California, Berkeley – has been part of the EDGES collaboration since 2012, but decided to also explore other ways to detect the signal. “My view is that we need several experiments doing different things and taking different approaches,” he says.

The Mapper of the IGM Spin Temperature (MIST) experiment, of which Monsalve is co-principal investigator, is a collaboration between Chilean, Canadian, Australian and American researchers. These instruments are looking at 25 to 105 MHz (MNRAS 530 4125). “Our approach was to simplify the instrument, get rid of the metal ground plate, and to take small, portable instruments to remote locations,” he explains. These locations have to fulfil very specific requirements – everything around the instrument, from mountains to the soil, can impact the instrument’s performance. “If the soil itself is irregular, that will be very difficult to characterize and its impact will be difficult to remove [from observations],” Monsalve says.

Two photos of a small portable radio telescope – in a snowy Arctic region and in a hot desert
Physics on the move MIST conducts measurements of the sky-averaged radio spectrum at frequencies below 200 MHz. Its monopole and dipole variants are highly portable and have been deployed in some of the most remote sites on Earth, including the Arctic (top) and the Nevada desert (bottom). (Courtesy: Raul Monsalve)

So far, the MIST instrument, which is also a dipole ping-pong table, has visited a desert in California, another in Nevada, and even the Arctic. Each time, the researchers spend a few weeks at the site collecting data, and it is portable and easy to set up, Monsalve explains. The team is planning more observations in Chile. “If you suspect that your environment could be doing something to your measurements, then you need to be able to move around,” continues Monsalve. “And we are contributing to the field by doing that.”

Aaron Parsons, also from the University of California, Berkeley, decided that the best way to detect this elusive signal would be to try and eliminate the ground entirely – by suspending a rotating antenna over a giant canyon with 100 m empty space in every direction.

His Electromagnetically Isolated Global Signal Estimation Platform (EIGSEP) includes an antenna hanging four storeys above the ground, attached to Kevlar cable strung across a canyon in Utah. It’s observing at 50 to 250 MHz. “It continuously rotates around and twists every which way,” Parsons explains. Hopefully, that will allow them to calibrate the instrument very accurately. Two antennas on the ground cross-correlate observations. EIGSEP began making observations last year.

More experiments are expected to come online in the next year. The Remote HI eNvironment Observer (RHINO), an initiative of the University of Manchester, will have a horn-shaped receiver made of a metal mesh that is usually used to construct skyscrapers. Horn shapes are particularly good for calibration, allowing for very precise measurements. The most famous horn-shaped antenna is Bell Laboratories’ Holmdel Horn Antenna in the US, with which two scientists accidentally discovered the CMB in 1965.

Initially, RHINO will be based at Jodrell Bank Observatory in the UK, but like other experiments, it could travel to other remote locations to hunt for the 21 cm signal.

Similarly, Subrahmanyan – who established the SARAS experiment in India and is now with CSIRO in Australia – is working to design a new radiometer from scratch. The instrument, which will focus on 40–160 MHz, is called Global Imprints from Nascent Atoms to Now (GINAN). He says that it will feature a recently patented self-calibrating antenna. “It gives a much more authentic measurement of the sky signal as measured by the antenna,” he explains.

In the meanwhile, the EDGES collaboration has not been idle. MIT Haystack Observatory’s Cappallo project manages EDGES, which is currently in its third iteration. It is still the size of a desk, but its top now looks like a box, with closed sides and its electronics tucked inside, and an even larger metal ground plate. The team has now made observations from islands in the Canadian archipelago and in Alaska’s Aleutian island chain (see photo at top of article).

“The 2018 EDGES result is not going to be accepted by the community until somebody completely independently verifies it,” Cappallo explains. “But just for our own sanity and also to try to improve on what we can do, we want to see it from as many places as possible and as many conditions as possible.” The EDGES team has replicated its results using the same data analysis pipeline, but no-one else has been able to reproduce the unusual signal.

All the astronomers interviewed welcomed the introduction of new experiments. “I think it’s good to have a rich field of people trying to do this experiment because nobody is going to trust any one measurement,” says Parsons. “We need to build consensus here.”

Taking off

Some astronomers have decided to avoid the struggles of trying to detect the global 21 cm signal from Earth – instead, they have their sights set on the Moon. Earth’s atmosphere is one of the reasons why the 21 cm signal is so difficult to measure. The ionosphere, a charged region of the atmosphere, distorts and contaminates this incredibly faint signal. On the far side of the Moon, any antenna would also be shielded from the cacophony of radio-frequency interference from Earth.

“This is why some experiments are going to the Moon,” says Parsons, adding that he is involved in NASA’s LuSEE-Night experiment. LuSEE-Night, or the Lunar Surface Electromagnetics Experiment, aims to land a low-frequency experiment on the Moon next year.

In July, at the National Astronomical Meeting in Durham, the University of Cambridge’s de Lera Acedo presented a proposal to put a miniature radiometer into lunar orbit. Dubbed “Cosmocube”, it will be a nanosatellite that will orbit the Moon searching for this 21 cm signal.

Illustration of a satellite with sails
Taking the hunt to space Provisional illustration of the CosmoCube with its antenna deployed for the 21 cm signal detection, i.e. in operational mode in space. This nanosatellite would travel to the far side of the Moon to get away from the Earth’s ionosphere, which introduces substantial distortions and absorption effects to any radio signal detection. (CC BY 4.0 Artuc and de Lera Acedo 2024 RAS Techniques and Instruments 4 rzae061)

“It is just in the making,” says de Lera Acedo, adding that it will not be in operation for at least a decade. “But it is the next step.”

In the meanwhile, groups here on Earth are in a race to detect this elusive signal. The instruments are getting more sensitive, the modelling is improving, and the unknowns are reducing. “If we do the experiments right, we will find the signal,” Monsalve believes. The big question is who, of the many groups with their hat in the ring, is doing the experiment “right”.

The post Cosmic dawn: the search for the primordial hydrogen signal appeared first on Physics World.

TEST de ARC RAIDERS – Déjà un triomphe?…

18 novembre 2025 à 09:10

Un tout nouveau jeu multijoueur est disponible depuis le début du mois et c’est le phénomène du moment ! 

Arc Raiders vous propose une expérience intense et immersive dans un futur post-apo dans lequel les robots sont les maîtres de cet univers. A noter, que ce titre n’est pas un free-to-play et il vous faudra débourser la somme de 39,99€ pour profiter de cette expérience. Le jeu enregistre des records de fréquentation sur ses serveurs et si vous êtes à la recherche de jeux à découvrir avec vos amis, Arc Raiders tombe au bon moment. 

Un jeu multi jouable en solo !

Arc Raiders est un jeu multijoueur d’extraction shooter qui mélange PvP et PvE. Cette nouvelle franchise propose un univers unique qui vous permet d’incarner un Raiders à la recherche de ressources pour contribuer à la survie de votre abri. Arc Raiders ne propose pas une histoire classique mais ponctue la narration de son lore par des textes à lire et des quêtes à réaliser. 

Vos parties peuvent être jouées à plusieurs avec un maximum de 3 personnes par équipe. Cependant si vous souhaitez jouer en solitaire, c’est possible mais les phases de gunfight entre les différentes équipes du jeu sont assez dures à gérer. Il vous faudra vous infiltrer pour récupérer le maximum de ressources sans vous faire tuer ou vous allier avec d’autres joueurs pour rentrer sain et sauf à votre base. Personnellement j’ai essayé de jouer seul et à chaque fois je suis mort, je préfère jouer avec des inconnus pour augmenter mes chances de survie et c’est toujours sympa de discuter avec des personnes du monde entier. C’est ainsi que j’ai rencontré un joueur italien avec qui on a réussi nos premières missions. Le jeu propose un chat de proximité, ce qui favorise l’immersion et permet de discuter avec des joueurs ennemis pour tenter d’apaiser les conflits. 

Avant chaque début de mission dans Arc Raiders, vous allez pouvoir choisir la carte sur laquelle vous souhaitez être déployé. Chaque environnement est assez différent et propose des situations plus ou moins urbaines. Au début, vous allez jouer sur une carte qui mélange forêt et désert avec très peu de bâtiments mais plus vous allez progresser dans le jeu plus vous aurez accès à certaines parties de ville. Il vous faudra faire attention car les villes regorgent de cachettes pour les joueurs ennemis et les robots présents sur ces cartes sont plus agressifs. Dans Arc Raiders, la gestion de vos ressources, de votre sac à dos et de vos armes sont des éléments indispensables pour préparer une bonne game. L’inventaire reste limité et il vous faudra choisir entre un équipement optimisé pour le combat ou la récolte de ressources. A noter que chaque mort dans une partie vous fait perdre l’ensemble de vos équipements et ressources obtenus. Arc Raiders ne pardonne pas et reste un jeu assez punitif. Dans le jeu, ce ne sont pas les humains dont il vous faudra faire attention mais les robots. Embark Studios chargé du développement a intégré une IA incroyable et redoutable. Les robots vous traquent à chaque instant et sont capables de vous détecter si vous émettez n’importe quel bruit. Des boss de zones sont aussi présents sur chacune des cartes et il vous faudra vous allier avec le maximum d’équipes pour en venir à bout si vous souhaitez obtenir des plans pour le craft et obtenir de nouveaux équipements et armes légendaires. Concernant l’extraction, il vous faudra regarder votre carte pour connaître les lieux de rendez-vous. Cependant il faut faire attention car certains moyens d’extraction demandent du temps pour s’ouvrir et émettent un son qui attire les robots et les joueurs. D’autres moyens plus discrets sont disponibles mais demandent des ressources ou des clés spécifiques pour s’ouvrir et mettre fin à la game.  

Arc Raiders est une excellente découverte et si vous êtes adeptes de jeux multijoueurs je vous le recommande chaudement. Embark Studio avait fait déjà très fort en proposant The Finals qui avait su plaire aux fans de fast-fps compétitif et monte d’un cran avec un jeu d’extraction-shooter de qualité. Si le multi ne vous intéresse pas, il est possible de jouer en solitaire et d’avancer dans le scénario sans soucis. Cependant l’aspect social est mis en avant et j’ai trouvé sympa de nouer des amitiés avec des étrangers ou de m’allier avec des ennemis lors de moments difficiles. Arc Raiders propose une expérience unique et permet aux néophytes du genre d’embarquer dans une expérience sociale incroyable. 

Test réalisé par Pierre

Cet article TEST de ARC RAIDERS – Déjà un triomphe?… est apparu en premier sur Insert Coin.

Ten-ion system brings us a step closer to large-scale qubit registers

17 novembre 2025 à 17:15
Photo of the members of Ben Lanyon's research group
Team effort Based at the University of Innsbruck, Ben Lanyon’s group has created a novel qubit register by trapping ten ions. (Courtesy: Victor Krutyanskiy/University of Innsbruck)

Researchers in Austria have entangled matter-based qubits with photonic qubits in a ten-ion system. The technique is scalable to larger ion-qubit registers, paving the way for the creation of larger and more complex quantum networks.

Visualization of the ten ion quantum
Ions in motion Each ion (large object) is moved one at a time into the “sweet spot” of the optical cavity. Once there, a laser beam drives the emission of a single photon (small object), entangled with the ion. The colours indicate ion–photon entanglement. (Courtesy: Universität Innsbruck/Harald Ritsch)

Quantum networks consist of matter-based nodes that store and process quantum information and are linked through photons (quanta of light). Already, Ben Lanyon’s group at the University of Innsbruck has made advances in this direction by entangling two ions in different systems. Now, in a new paper published in Physical Review Letters , they describe how they have developed and demonstrated a new method to entangle a string of ten ions with photons. In the future, this approach could enable the entanglement of sets of ions in different locations through light, rather than one ion at a time.

To achieve this, Lanyon and colleagues trapped a chain of 10 calcium ions in a linear trap in an optical cavity. By changing the trapping voltages in the trap, each ion was moved, one-by-one, into the cavity. Once inside, the ion was placed in the “sweet spot”, where the ion’s interaction with the cavity is the strongest. There, the ion  emitted a single photon when exposed to a 393 nm Raman laser beam. This beam was tightly focused on one ion, guaranteeing that the emitted photon – collected in a single-mode optical fibre – comes out from one ion at a time. This process was carried out ten times, one per ion, to obtain a train of ten photons.

By using quantum state tomography, the researchers reconstructed the density matrix, which describes the correlation between the states of ions (i) and photons (j).  To do so, they measure every ion and photon state in three different basis, resulting in nine Pauli-basis configurations of quantum measurements. From the density matrix, the concurrence (a measure of entanglement) between the ion (i) and photon (j) was found to be positive only when  i = j, and equal to zero otherwise. This implies that the ion is uniquely entangled with the photon it produced, and unentangled with the photon produced by other ions.

From the density matrix, they also calculate the fidelity with the Bell state (a state of maximum entanglement), yielding an average 92%. As Marco Canteri points out, “this fidelity characterizes the quality of entanglement between the ion-photon pair for i=j”.

This work developed and demonstrated a technique whereby matter-based qubits and photonic qubits can be entangled, one  at a time, in ion strings.  Now, the group aims to “demonstrate universal quantum logic within the photon-interfaced 10-ion register and, building up towards entangling two remote 10-ion processors through the exchange of photons between them,” explains team member Victor Krutyanskiy. If this method effectively scales to larger systems, more complex quantum networks could be built. This would lead to applications in quantum communication and quantum sensing.

The post Ten-ion system brings us a step closer to large-scale qubit registers appeared first on Physics World.

Quelques mois avec les Leica Q3 et Q43

17 novembre 2025 à 19:52
En août 2025, j’ai fait quelque chose qui me semblait jusque-là inimaginable: acheter un boîtier Leica. Il faut dire que, même si j’avais beaucoup aimé mon Leica Digilux 4 dont j’ai parlé ici en 2009, pour moi, ce n’était pas vraiment un boîtier Leica, puisqu’il s’agissait de l’équivalent d’un Panasonic LX3, les deux avec une optique Leica, mais une manière propre à Leica de gérer les JPEG qui faisait malgré tout la ... Continuer la lecture

💾

TEST de LAN Party Adventure – Un puzzle-game nostalgique, cosy et relaxant

17 novembre 2025 à 09:24

LAN Party Adventure est un puzzle-game disponible sur Steam. Développé par Leap Game Studios, il mélange réflexion et nostalgie dans une ambiance particulièrement relaxante. Le concept est simple et terriblement efficace : brancher et connecter des ordinateurs du début des années 2000. On manipule des câbles VGA bleus, des multiprises et des cartes réseau pour constituer de véritables LAN. Joué à la première personne, le titre offre des puzzles à la complexité croissante. Voyons ensemble ce qu’il a dans le ventre… 

Class of 1999

Le jeu vous place dans la peau d’un lycéen de l’an 2000. Vêtu de son plus beau t-shirt KoRn sous un hoodie Adidas délicieusement vintage, vous êtes le roi des ordinateurs. A tel point que vos potes vous appellent dès qu’ils ont un problème informatique. Vous commencez donc par installer votre PC dans votre chambre. Un tutoriel simple et efficace qui permet de s’immerger dans un ambiance que les moins de 35 ans ne peuvent pas connaître. On connecte les câbles et on tape des lignes de codes comme au bon vieux temps. Une boucle de gameplay qui m’évoque furieusement Motorcycle Mechanic Simulator. Un jeu dans lequel j’ai englouti une bonne vingtaine d’heures. 

On n’est pas chez mémé

L’un des charmes du jeu réside dans la variété de ses environnements. Chaque niveau propose une nouvelle ambiance. On passe d’une chambre d’ado couverte de posters, à un salon vieillot, ou encore à une salle de classe aux néons froids. Ces décors, simples mais jolis, renforcent le côté cosy et relaxant du jeu. Tout en éveillant la fibre nostalgique de ceux ayant grandi à cette époque. La musique se résume quant à elle à quelques morceaux d’ambiance qui se marient plutôt bien avec le contexte. 

C’était mieux avant

Les références à la culture gaming des années 2000 sont omniprésentes : vieux moniteurs CRT, tours beige, câbles entortillés, stickers rétro… Et bien sûr, ces fameux câbles VGA bleus que tous PCistes de l’époque ont un jour manipulés. Ce souci du détail participe pleinement au charme du jeu. On esquisse aussi un sourire devant les jaquettes parodiques de Doom, Counter Strike, ou encore Starcraft. 

Le Club des 5

En plus des puzzles, un mystère relie les différents niveaux. Car on ne se contente pas de brancher des PC pour passer la nuit à se fragger entre amis. L’un d’entre eux disparaît subitement, ce qui sert de fil conducteur à l’intrigue. Cette touche narrative ajoute une dimension d’enquête inattendue. Elle donne envie de progresser pour découvrir ce qui se cache derrière ces installations informatiques de plus en plus complexes.

Le bug de l’an 2000

Le jeu n’est pas exempt de défauts. Impossible, par exemple, de déplacer un ordinateur une fois qu’il est branché. Une petite erreur de placement peut donc forcer le joueur à tout déconnecter, ce qui casse parfois le rythme.

Malgré ce bémol, LAN Party Adventure reste un puzzle-game cosy, relaxant et terriblement nostalgique. Pour les amateurs de réflexion, de mystère et de vibes rétro, c’est une petite pépite sympathique à découvrir absolument. Vive la multiprise !

Test réalisé par Florian

Cet article TEST de LAN Party Adventure – Un puzzle-game nostalgique, cosy et relaxant est apparu en premier sur Insert Coin.

Réchauffement : peut-on réduire le CO2 océanique ?

21 novembre 2025 à 12:20
Face à l’urgence climatique, les techniques d’élimination du CO₂ dissous dans l’océan suscitent quelques espoirs et beaucoup d’inquiétudes. Comment procéder ? Quelles règles se donner ? Qui doit décider ? Les éclairages du biogéochimiste Olivier Sulpis, chargé d’évaluer ces méthodes.

Non-invasive wearable device measures blood flow to the brain

17 novembre 2025 à 10:45

Measuring blood flow to the brain is essential for diagnosing and developing treatments for neurological disorders such as stroke, vascular dementia or traumatic brain injury. Performing this measurement non-invasively is challenging, however, and achieved predominantly using costly MRI and nuclear medicine imaging techniques.

Emerging as an alternative, modalities based on optical transcranial measurement are cost-effective and easy to use. In particular, speckle contrast optical spectroscopy (SCOS) – an offshoot of laser speckle contrast imaging, which uses laser light speckles to visualize blood vessels – can measure cerebral blood flow (CBF) with high temporal resolution, typically above 30 Hz, and cerebral blood volume (CBV) through optical signal attenuation.

Researchers at the California Institute of Technology (Caltech) and the Keck School of Medicine’s USC Neurorestoration Center have designed a lightweight SCOS system that accurately measures blood flow to the brain, distinguishing it from blood flow to the scalp. Co-senior author Charles Liu of the Keck School of Medicine and team describe the system and their initial experimentation with it in APL Bioengineering.

Detection channels in a speckle contrast optical spectroscopy system
Seven simultaneous measurements Detection channels with differing source-to-detector distances monitor blood dynamics in the scalp, skull and brain layers. (Courtesy: CC BY 4.0/APL Bioeng. 10.1063/5.0263953)

The SCOS system consists of a 3D-printed head mount designed for secure placement over the temple region. It holds a single 830 nm laser illumination fibre and seven detector fibres positioned at seven different source-to-detector (S–D) distances (between 0.6 and 2.6 cm) to simultaneously capture blood flow dynamics across layers of the scalp, skull and brain. Fibres with shorter S–D distances acquire shallower optical data from the scalp, while those with greater distances obtain deeper and broader data. The seven channels are synchronized to exhibit identical oscillation frequencies corresponding to the heart rate and cardiac cycle.

When the SCOS system directs the laser light onto a sample, multiple random scattering events occur before the light exits the sample, creating speckles. These speckles, which materialize on rapid timescales, are the result of interference of light travelling along different trajectories. Movement within the sample (of red blood cells, for instance) causes dynamic changes in the speckle field. These changes are captured by a multi-million-pixel camera with a frame rate above 30 frames/s and quantified by calculating the speckle contrast value for each image.

Human testing

The researchers used the SCOS system to perform CBF and CBV measurements in 20 healthy volunteers. To isolate and obtain surface blood dynamics from brain signals, the researchers gently pressed on the superficial temporal artery (a terminal branch of the external carotid artery that supplies blood to the face and scalp) to block blood flow to the scalp.

In tests on the volunteers, when temporal artery blood flow was occluded for 8 s, scalp-sensitive channels exhibited significant decreases in blood flow while brain-sensitive channels showed minimal change, enabling signals from the internal carotid artery that supplies blood to the brain to be clearly distinguished. Additionally, the team found that positioning the detector 2.3 cm or more away from the source allowed for optimal brain blood flow measurement while minimizing interference from the scalp.

“Combined with the simultaneous measurements at seven S–D separations, this approach enables the first quantitative experimental assessment of how scalp and brain signal contributions vary with depth in SCOS-based CBF measurements and, more broadly, in optical measurements,” they write. “This work also provides crucial insights into the optimal device S–D distance configuration for preferentially probing brain signal over scalp signal, with a practical and subject-friendly alternative for evaluating depth sensitivity, and complements more advanced, hardware-intensive strategies such as time-domain gating.”

The researchers are now working to improve the signal-to-noise ratio of the system. They plan to introduce a compact, portable laser and develop a custom-designed extended camera that spans over 3 cm in one dimension, enabling simultaneous and continuous measurement of blood dynamics across S–D distances from 0.5 to 3.5 cm. These design advancements will enhance spatial resolution and enable deeper brain measurements.

“This crucial step will help transition the system into a compact, wearable form suitable for clinical use,” comments Liu. “Importantly, the measurements described in this publication were achieved in human subjects in a very similar manner to how the final device will be used, greatly reducing barriers to clinical application.”

“I believe this study will advance the engineering of SCOS systems and bring us closer to a wearable, clinically practical device for monitoring brain blood flow,” adds co-author Simon Mahler, now at Stevens Institute of Technology. “I am particularly excited about the next stage of this project: developing a wearable SCOS system that can simultaneously measure both scalp and brain blood flow, which will unlock many fascinating new experiments.”

The post Non-invasive wearable device measures blood flow to the brain appeared first on Physics World.

Tin Hearts: Act 1 Now Arrives This February On Quest

10 décembre 2025 à 10:00

VR puzzle adventure Tin Hearts will bring its first act to Quest in February.

Developed by Rogue Sun and IPHIGAMES, Tin Hearts is a Lemmings-style game that explores the story of a fictional Victorian inventor, Albert Butterworth. Guiding toy soldiers through this Dickensian world with block-based puzzles, VR support arrived in a post-launch update on PS VR2 and Steam last year. Originally targeting a December 11 launch, that's now been delayed to February 12, 2026.

Detailed in a press release, publisher Wired Productions calls Act 1 a standalone episode where these tiny soldiers are appropriately dressed for the festive season in an attic filled with toys. Costing $5.99 for the first part, the publisher previously stated Acts 2, 3, and 4 will follow “in the coming weeks” on Quest. No specific release dates have been confirmed yet.

Originally released through a now delisted PC VR prologue on PC VR in 2018, we had positive impressions in our Tin Hearts VR preview two years ago. Stating it offers “some well-considered mechanics” that caught our attention, we believed it provides “enjoyable puzzles and an intriguing whimsical setting.”

Tin Hearts is out now in full on flatscreen platforms, PS VR2, and PC VR. Act 1 arrives on the Meta Quest platform on February 12, 2026.

Update Notice

This article was originally published on November 14, 2025. It was updated on December 10, 2025, after Wired Productions confirmed Act 1's release date on Quest has been delayed.

The future of quantum physics and technology debated at the Royal Institution

14 novembre 2025 à 17:41

As we enter the final stretch of the International Year of Quantum Science and Technology (IYQ), I hope you’ve enjoyed our extensive quantum coverage over the last 12 months. We’ve tackled the history of the subject, explored some of the unexplained mysteries that still make quantum physics so exciting, and examined many of the commercial applications of quantum technology. You can find most of our coverage collected into two free-to-read digital Quantum Briefings, available here and here on the Physics World website.

Over the last 100 years since Werner Heisenberg first developed quantum mechanics on the island of Helgoland in June 1925, quantum mechanics has proved to be an incredibly powerful, successful and logically consistent theory. Our understanding of the subatomic world is no longer the “lamentable hodgepodge of hypotheses, principles, theorems and computational recipes”, as the Israeli physicist and philosopher Max Jammer memorably once described it.

In fact, quantum mechanics has not just transformed our understanding of the natural world; it has immense practical ramifications too, with so-called “quantum 1.0” technologies – lasers, semiconductors and electronics – underpinning our modern world. But as was clear from the UK National Quantum Technologies Showcase in London last week, organized by Innovate UK, the “quantum 2.0” revolution is now in full swing.

The day-long event, which is now in its 10th year, featured over 100 exhibitors, including many companies that are already using fundamental quantum concepts such as entanglement and superposition to support the burgeoning fields of quantum computing, quantum sensing and quantum communication. The show was attended by more than 3000 delegates, some of whom almost had to be ushered out of the door at closing time, so keen were they to keep talking.

Last week also saw a two-day conference at the historic Royal Institution (RI) in central London that was a centrepiece of IYQ in the UK and Ireland. Entitled Quantum Science and Technology: the First 100 Years; Our Quantum Future and attended by over 300 people, it was organized by the History of Physics and the Business Innovation and Growth groups of the Institute of Physics (IOP), which publishes Physics World.

The first day, focusing on the foundations of quantum mechanics, ended with a panel discussion – chaired by my colleague Tushna Commissariat and Daisy Shearer from the UK’s National Quantum Computing Centre – with physicists Fay Dowker (Imperial College), Jim Al-Khalili  (University of Surrey) and Peter Knight. They talked about whether the quantum wavefunction provides a complete description of physical reality, prompting much discussion with the audience. As Al-Khalili wryly noted, if entanglement has emerged as the fundamental feature of quantum reality, then “decoherence is her annoying and ever-present little brother”.

Knight, meanwhile, who is a powerful figure in quantum-policy circles, went as far as to say that the limit of decoherence – and indeed the boundary between the classical and quantum worlds – is not a fixed and yet-to-be revealed point. Instead, he mused, it will be determined by how much money and ingenuity and time physicists have at their disposal.

On the second day of the IOP conference at the RI, I chaired a discussion that brought together four future leaders of the subject: Mehul Malik (Heriot-Watt University) and Sarah Malik (University College London) along with industry insiders Nicole Gillett (Riverlane) and Muhammad Hamza Waseem (Quantinuum).

As well as outlining the technical challenges in their fields, the speakers all stressed the importance of developing a “skills pipeline” so that the quantum sector has enough talented people to meet its needs. Also vital will be the need to communicate the mysteries and potential of quantum technology – not just to the public but to industrialists, government officials and venture capitalists. By many measures, the UK is at the forefront of quantum tech – and it is a lead it should not let slip.

Clear talker Jim Al-Khalili giving his Friday night discourse at the Royal Institution on 7 November 2025. (Courtesy: Matin Durrani)

The week ended with Al-Khalili giving a public lecture, also at the Royal Institution, entitled “A new quantum world: ‘spooky’ physics to tech revolution”. It formed part of the RI’s famous Friday night “discourses”, which this year celebrate their 200th anniversary. Al-Khalili, who also presents A Life Scientific on BBC Radio 4, is now the only person ever to have given three RI discourses.

After the lecture, which was sold out, he took part in a panel discussion with Knight and Elizabeth Cunningham, a former vice-president for membership at the IOP. Al-Khalili was later presented with a special bottle of “Glentanglement” whisky made by Glasgow-based Fraunhofer UK for the Scottish Quantum Technology cluster.

The post The future of quantum physics and technology debated at the Royal Institution appeared first on Physics World.

TEST de BATTLEFIELD 6 – A travers la campagne…

14 novembre 2025 à 12:07

Battlefield c’est un jeu vidéo qu’on ne présente plus et qui fait la part belle aux confrontations online sur le champs de bataille… Mais c’est aussi une campagne solo mouvementée qu’on retrouve dans ce nouvel épisode Battlefield 6… Attardons-nous dessus…

Découpée en 9 chapitres qui sont autant de missions variées, cette campagne solo est un peu courte, comme souvent (6h environ…), mais elle est rythmée et vaut le coup de s’y consacrer avant de se lancer dans le multi.

Sans être attachée à un scénario spécialement ficelé, l’histoire nous fait voyager à travers le globe (Egypte, New York, Europe…) en incarnant différents personnages d’une unité d’élite américaine en guerre contre une milice privée…

On voit donc du pays mais aussi des ambiances différentes, de nuit ou de jour avec différentes approches dans le gameplay entre infiltration et assaut. Comme dans le multi, on évolue à pied ou à bord de véhicules avec des spécialités spécifiques comme sniper ou autre… Ainsi, l’approche est toujours différente même si les ennemis, eux, sont souvent un peu teubés malheureusement…

La campagne offre souvent des maps assez ouvertes mais toujours dirigistes. On suit une progression finalement assez linéaire mais dans des lieux mouvementés pour une approche parfois cinématographique plutôt spectaculaire et très explosive…

Testé sur PS5, le jeu est graphiquement très solide avec des effets de lumières réalistes et une physique exemplaire en ce qui concerne notamment la destruction des bâtiments. C’est un gros point fort du titre dans son ensemble.

Bien sûr, BF6 prend tout son sens en multijoueurs online avec des maps et des modes spécifiques pour des confrontations bien plus tactiques et pleines de rebondissements. Cela dit, la campagne solo reste un indispensable à mon sens pour entrer dans l’univers avec une approche certes plus dirigiste mais aussi plus immersive, avec une ambiance particulière. Battelfield porte bien son nom et, alors que la concurrence pointe le bout de son nez aujourd’hui, reste une référence en la matière.

Cet article TEST de BATTLEFIELD 6 – A travers la campagne… est apparu en premier sur Insert Coin.

Comment la science prépare-t-elle l’avenir ?

14 novembre 2025 à 11:15
Imaginer et préparer le futur afin d’orienter la recherche et les politiques publiques, tel est le but de la prospective. Un exercice périlleux, soulignent les scientifiques. Ingrédients requis : le dialogue entre les disciplines et des modèles robustes répondant aux multiples incertitudes.

Neural networks discover unstable singularities in fluid systems

14 novembre 2025 à 09:56

Significant progress towards answering one of the Clay Mathematics Institute’s seven Millennium Prize Problems has been achieved using deep learning. The challenge is to establish whether or not the Navier-Stokes equation of fluid dynamics develops singularities. The work was done by researchers in the US and UK – including some at Google Deepmind. Some team members had already shown that simplified versions of the equation could develop stable singularities, which reliably form. In the new work, the researchers found unstable singularities, which form only under very specific conditions.

The Navier–Stokes partial differential equation was developed in the early 19th century by Claude-Louis Navier and George Stokes. It has proved its worth for modelling incompressible fluids in scenarios including water flow in pipes; airflow around aeroplanes; blood moving in veins; and magnetohydrodynamics in plasmas.

No-one has yet proved, however, whether smooth, non-singular solutions to the equation always exist in three dimensions. “In the real world, there is no singularity…there is no energy going to infinity,” says fluid dynamics expert Pedram Hassanzadeh of the University of Chicago. “So if you have an equation that has a singularity, it tells you that there is some physics that is missing.” In 2000, the Clay Mathematics Institute in Denver, Colorado listed this proof as one of seven key unsolved problems in mathematics, offering a reward of $1,000,000 for an answer.

Computational approaches

Researchers have traditionally tackled the problem analytically, but in recent decades high-level computational simulations have been used to assist in the search. In a 2023 paper, mathematician Tristan Buckmaster of New York University and colleagues used a special type of machine learning algorithm called a physics-informed neural network to address the question.

“The main difference is…you represent [the solution] in a highly non-linear way in terms of a neural network,” explains Buckmaster. This allows it to occupy a lower-dimensional space with fewer free parameters, and therefore to be optimized more efficiently. Using this approach, the researchers successfully obtained the first stable singularity in the Euler equation. This is an analogy to the Navier-Stokes equation that does not include viscosity.

A stable singularity will still occur if the initial conditions of the fluid are changed slightly – although the time taken for them to form may be altered. An unstable singularity, however, may never occur if the initial conditions are perturbed even infinitesimally. Some researchers have hypothesized that any singularities in the Navier-Stokes equation must be unstable, but finding unstable singularities in a computer model is extraordinarily difficult.

“Before our result there hadn’t been an unstable singularity for an incompressible fluid equation found numerically,” says geophysicist Ching-Yao Lai of California’s Stanford University.

Physics-informed neural network

In the new work the authors of the original paper and others teamed up with researchers at Google Deepmind to search for unstable singularities in a bounded 3D version of the Euler equation using a physics-informed neural network. “Unlike conventional neural networks that learn from vast datasets, we trained our models to match equations that model the laws of physics,” writes Yongji Wang of New York University and Stanford on Deepmind’s blog. “The network’s output is constantly checked against what the physical equations expect, and it learns by minimizing its ‘residual’, the amount by which its solution fails to satisfy the equations.”

After an exhaustive search at a precision that is orders of magnitude higher than a normal deep learning protocol, the researchers discovered new families of singularities in the 3D Euler equation. They also found singularities in the related incompressible porous media equation used to model fluid flows in soil or rock; and in the Boussinesq equation that models atmospheric flows.

The researchers also gleaned insights into the strength of the singularities. This could be important as stronger singularities might be less readily smoothed out by viscosity when moving from the Euler equation to the Navier-Stokes equation. The researchers are now seeking to model more open systems to study the problem in a more realistic space.

Hassanzadeh, who was not involved in the work, believes that it is significant – although the results are not unexpected. “If the Euler equation tells you that ‘Hey, there is a singularity,’ it just tells you that there is physics that is missing and that physics becomes very important around that singularity,” he explains. “In the case of Euler we know that you get the singularity because, at the very smallest scales, the effects of viscosity become important…Finding a singularity in the Euler equation is a big achievement, but it doesn’t answer the big question of whether Navier-Stokes is a representation of the real world, because for us Navier-Stokes represents everything.”

He says the extension to studying the full Navier-Stokes equation will be challenging but that “they are working with the best AI people in the world at Deepmind,” and concludes “I’m sure it’s something they’re thinking about”.

The work is available on the arXiv pre-print server.

The post Neural networks discover unstable singularities in fluid systems appeared first on Physics World.

TEST de PLANTS VS ZOMBIES: REPLANTED – Les gens du jardin sont de retour!…

14 novembre 2025 à 08:54

Phénomène des années 2000-2010, sur PC, consoles mais aussi et surtout sur mobiles ou consoles portables, Plants vs. Zombie revient cette année sur Nintendo Switch 2 avec une édition « Replanted », une sorte de remaster bienvenu tant le concept du jeu est drôle et addictif. Retour à la version 2D d’origine après des versions 3D qui restaient néanmoins intéressantes comme Garden Warfare, rappelez-vous.

Dès les premières notes de musique et les premières images, on se replonge avec nostalgie dans un jeu qui a eu beaucoup de succès auprès de tous types de joueuses et joueurs. Pour ceux qui ne connaitrait pas, on contrôle des plantes pour défendre un jardin d’invasions de zombies dans un jeu type Tower Defense. Les zombies arrivent par la droite et ne doivent pas arriver jusqu’à notre maison située à gauche.

On retrouve le mode aventure par lequel on débute pour passer différents niveaux successives qui nous permettent de glaner au fur et à mesure de nouvelles plantes. Les fameux pistou-pois sont toujours les plus efficaces avec des versions plus ou moins avancées comme ceux qui gèlent les zombies. On trouve aussi les cerises qui explosent tout aux alentours ou bien la plante carnivore qui grignotte le zombie qui approche ou bien les noix qui vont ralentir les assaillants, trop occupés à les dévorer…

Beaucoup d’armes écolos à notre actif donc pour en découdre au mieux face à des vagues ennemis de plus en plus redoutables. Evidemment, ils sont parfois plus nombreux mais eux aussi possèdent des variantes avec le lanceur de javelot, le footballeur américain et j’en passe… ils peuvent ainsi parfois être plus rapide ou plus difficile à tuer…

A nous, donc, de bien choisir nos plantes avant chaque vagues car on ne pourra pas tout utiliser à chaque fois. Il faut donc prendre garde aux armes gourmandes car, en effet, ces armes doivent se recharger avec les rayons du soleil, et pour gagner des rayons du soleil il faut planter des tournesols (ceux qui tombent du ciel ne suffiront pas et lors des vagues de nuit c’est forcément plus compliqué…). Là aussi, il faut don bien composer avec cet axe « gestion ».

On retrouve bien sûr Dave le Dingo, voisin farfelu qui va pouvoir nous vendre des petites choses afin de faire évoluer au mieux notre équipement.

Pour aller plus loin dans le fun, le jeu propose d’autres modes et notamment un mode 2 joueurs en local (coop ou versus) qui est plutôt sympa et bien conçu. Si le mode coop reste assez classique, il s’agit surtout d’être coordonné, le mode est versus est plus original pour celui qui gère les zombies. C’est en effet une première qui permet de faire avancer ces amusants morts-vivants un peu à la manière des plantes avec ici, une recharge en cervelles et non en rayons du soleil…

Parlons également des mini-jeux proposés avec du bowling à base noix, le zombie manchot, ce genre de petits jeux efficaces qui se marient bien au concept. Mais on trouve aussi un mode Enigmes qui propose de petits défis un peu plus stratégiques avec une difficulté croissante. Une bonne idée en tous cas pour les plus acharnés.

Visuellement, le titre est très beau et très coloré sur la Switch 2 avec une animation fluide. Mais la direction artistique reste celle qu’on connait, et c’est sans doute pas plus mal.

Plants vs. Zombies : Replanted est un remake bienvenu d’un concept qui a toujours fait mouche. On gagne ici en contenu avec des modes de jeux amusants et efficace et notamment la possibilité d’en découdre à 2 dans un jeu plutôt solitaire à la base. La recette est toujours parfaite pour un jeu que les plus anciens redécouvriront avec nostalgie. Les plus jeunes découvriront un principe addictif et délirant qui leur plaira à coup sûr.

Cet article TEST de PLANTS VS ZOMBIES: REPLANTED – Les gens du jardin sont de retour!… est apparu en premier sur Insert Coin.

Test – Sur-couverture chauffante Yentl de Duux

14 novembre 2025 à 00:57

On se met au chaud avec le plaid chauffant Yentl de Duux 

L’hiver approche, les soirées franchement froides aussi, et l’envie de s’envelopper dans quelque chose de doux et réconfortant se fait sentir. Duux, marque déjà connue pour ses appareils de confort domestique élégants, propose avec la Yentl sur-couverture chauffante Bubble Beige une expérience cocooning aussi esthétique qu’efficace. J’ai eu l’occasion de la tester ces derniers jours, et j’ai hâte de vous partager ses atouts (et défauts ?)

Vous retrouverez Yentl en 4 versions différentes, à rayure ou style bulle, en gris ou beige. Nous avons de notre côté opté pour les bulles grises pour aller au mieux avec notre intérieur, et côté dimensions, c’est du 200×200. À noter que les modèles rayés sur plus cher de 20 €. Le nôtre est quant à lui affiché au prix de 129,99 € directement sur le site de la marque.

Place au test !

 

Unboxing

Commençons notre test par notre partie unboxing où nous retrouverons à l’avant un visuel du plaid plié avec sa télécommande. Le nom de la marque ainsi que du modèle, Yentl et ses dimensions ainsi que sa fonction, « heated overblanket » soit en français sur-couverture chauffante sont bien représentés en compagnie de quelques fonctionnalités. Mais c’est à l’arrière que l’on retrouvera un descriptif plus complet avec notamment les spécifications et les fonctionnalités. Nous y reviendrons peu après plus en détails.

Yentl Duux

 

Caractéristiques techniques

Marque Duux
Code EAN 8716164983852
Numéro de produit DXOB11
Couleur Gris
Afficheur Oui
Adapté aux enfants Oui
Minuteur 1 – 9 heures
Positions 9
Interrupteur marche/arrêt Oui
Garantie 24 mois
Inclus Manuel
Spécifications techniques
Consommation 160W
Tension 220 – 240 volts
Dimensions et poids
Poids 3,3 kg
Dimensions Emballage 46 x 46 x 18 cm
Opération Contrôleur avec LCD
Protection contre la surchauffe Oui
Matériau Fausse fourrure de première qualité
Lavable en machine Oui, max. 30°C
Résistant au sèche-linge Oui, uniquement sur la température la plus basse
Dimensions 200 x 200 cm

 

Fonctionnalités

  • Des dimensions généreuses, un grand confort – Avec ses dimensions de 200×200 cm, Yentl offre de la chaleur de la tête aux pieds ! Suffisamment d’espace pour s’y blottir ensemble sur le canapé ou pour s’y emmitoufler complètement lors d’un moment de détente. Que vous vous détendiez, lisiez un bon livre ou regardiez votre série préférée : Yentl rend chaque moment doux et chaleureux.
  • Le confort de la chaleur dans sa forme la plus douce – Yentl est aussi luxueux qu’il en a l’air ! La couverture chauffante est fabriquée en fausse fourrure de haute qualité avec un motif subtil à bulles ou à rayures. Disponible en beige ou en gris. Des couleurs qui respirent la tranquillité et qui s’intègrent sans effort dans tous les intérieurs.
  • Ton moment, ta chaleur – Avec pas moins de 9 niveaux de chaleur et une minuterie réglable de 1 à 9 heures, vous décidez exactement de la température et de la durée. Vous obtenez ainsi toujours la température idéale pour votre moment de détente !
  • Se détendre sans soucis – Yentl est conçu pour un plaisir sans souci. La protection contre la surchauffe offre une sécurité maximale et les commandes amovibles facilitent le lavage. Mettez la couverture chauffante dans la machine à laver à 30°C, puis dans le sèche-linge à la température la plus basse. Prêt pour la prochaine séance de câlins !
  • Économique à l’usage, grand confort de chauffage – Yentl chauffe rapidement et efficacement avec une consommation de seulement 160W. Cette couverture chauffante prouve que le confort n’a pas besoin d’être coûteux ! Profitez d’une chaleur douillette sans facture d’énergie élevée.
  • La touche finale pour tout intérieur – Que vous choisissiez le beige clair ou le gris doux, Yentl est un pur produit de luxe. Drapez-la sur votre canapé ou votre lit et la couverture chauffante ajoutera instantanément de la chaleur et du style à la pièce !

 

Contenu

  • Plaid
  • Télécommande détachable
  • Manuel

Yentl Duux

Test

Dès le déballage, le ton est donné : la Yentl dégage une vraie impression de qualité. Son tissu façon fausse fourrure à effet « bubble » est incroyablement doux, moelleux, presque velouté sous les doigts. Le coloris gris s’intègre facilement à tout type de décoration intérieure, qu’on soit dans un salon moderne, une chambre bohème ou un van aménagé. Ce n’est pas seulement une couverture chauffante, c’est un vrai élément de confort visuel et tactile.

Yentl Duux Yentl Duux

Avec ses 200 × 200 cm, elle est imposante, idéale pour deux personnes ou pour s’enrouler dedans seul. Sa taille généreuse lui permet de couvrir tout un lit, mais elle s’utilise tout aussi bien sur un canapé ou un fauteuil. Duux a pensé à la praticité : la commande est amovible, la couverture passe à la machine à 30 °C et même au sèche-linge, à basse température. Un détail qui change tout quand on a des enfants ou des animaux à la maison.

La puissance de 160 W suffit largement à chauffer la surface de manière homogène. En une dizaine de minutes, on sent déjà la chaleur se diffuser agréablement. Le contrôle propose neuf niveaux de chaleur, ce qui permet de vraiment ajuster selon la température de la pièce ou la sensibilité de chacun. La minuterie intégrée, réglable de une à neuf heures, est un vrai atout : on peut s’endormir tranquillement sans craindre que la couverture reste allumée toute la nuit. C’est d’ailleurs une fonction essentielle en matière de sécurité, tout comme la protection contre la surchauffe intégrée au système.

Yentl Duux

À l’usage, le confort est indéniable. On retrouve la sensation d’une chaleur douce et enveloppante, pas d’un chauffage artificiel. Le tissu reste respirant, on ne transpire pas dessous, et la chaleur se répartit bien sur l’ensemble du plaid. Que ce soit pour une soirée Netflix, une sieste, ou simplement un moment de détente après avoir couché les enfants, elle devient rapidement indispensable. Dans une région comme le Var, où les hivers ne sont pas extrêmes mais où les soirées peuvent vite devenir fraîches, elle permet d’éviter de raviver la cheminée. Mes enfants, surtout mon grand, l’adore ! Il s’y blottit dans le canapé les matins où il tombe du lit un peu trop tôt.

Côté design, Duux réussit presque un sans-faute. Contrairement à beaucoup de couvertures chauffantes qui font un peu accessoire médical, la Yentl a le look d’un plaid haut de gamme. Elle se fond dans le décor sans le moindre fil apparent. On la laisse volontiers sur le canapé, non pas parce qu’on ne sait pas où la ranger, mais parce qu’elle ajoute une touche cosy à la pièce.

Yentl Duux

Bien sûr, il faut garder à l’esprit que ce type de produit demande un minimum de précautions : ne pas la plier lorsqu’elle est en marche, vérifier l’état du câble et éviter de l’utiliser dans des contextes trop humides. Mais dans le cadre d’un usage domestique classique, le système semble bien fiable, et la qualité de fabrication inspire confiance.

C’est typiquement le genre d’objet qu’on adopte sans s’en rendre compte — et qu’on ne veut plus quitter une fois essayé. Cependant il y a deux bémols. Pour commencer, le câble est trop court selon la disposition de votre pièce et une rallonge s’impose pour une utilisation dans mon canapé, ce qui est tout de même gênant. Il n’y a pas de bonnes longueurs et je comprends le choix de Duux de ne pas avoir fait un câble de 3m de long. Cependant si comme moi, vous avez votre canapé en plein milieu de la pièce, cela peut être un souci. Dernier point, le plaid est de même assez lourd et ne se fait pas oublier lorsqu’il est sur nous.

Conclusion 

En résumé, la Yentl Bubble grise de Duux réussit à combiner performance et raffinement. Elle chauffe vite, elle est douce, belle, et simple à entretenir. Elle n’est pas la moins chère du marché, mais son rapport qualité-prix reste très bon compte tenu de la finition et du confort qu’elle offre. Si vous cherchez une couverture chauffante à la fois élégante et efficace, capable d’accompagner vos soirées d’hiver ou vos escapades en van, la Yentl coche toutes les cases.

On rappellera que vous pourrez retrouvere Yentl en 4 versions différentes, à rayure ou style bulle, en gris ou beige. Nous avons de notre côté opté pour les bulles grises pour aller au mieux avec notre intérieur, et côté dimensions, c’est du 200×200. À noter que les modèles rayés sur plus cher de 20 €. Le nôtre est quant à lui affiché au prix de 129,99 € directement sur le site de la marque.

Argent Award Vonguru

Test – Sur-couverture chauffante Yentl de Duux a lire sur Vonguru.

NASA’s Goddard Space Flight Center hit by significant downsizing

13 novembre 2025 à 16:48

NASA’s Goddard Space Flight Center (GSFC) looks set to lose a big proportion of its budget as a two-decade reorganization plan for the centre is being accelerated. The move, which is set to be complete by March, has left the Goddard campus with empty buildings and disillusioned employees. Some staff even fear that the actions during the 43-day US government shutdown, which ended on 12 November, could see the end of much of the centre’s activities.

Based in Greenbelt, Maryland, the GSFC has almost 10 000 scientists and engineers, about 7000 of whom are directly employed by NASA contractors. Responsible for many of NASA’s most important uncrewed missions, telescopes, and probes, the centre is currently working on the Nancy Grace Roman Space Telescope, which is scheduled to launch in 2027, as well as the Dragonfly mission that is due to head for Saturn’s largest moon Titan in 2028.

The ability to meet those schedules has now been put in doubt by the Trump administration’s proposed budget for financial year 2026, which started in September. It calls for NASA to receive almost $19bn – far less than the $25bn it has received for the past two years. If passed, Goddard would lose more than 42% of its staff.

Congress, which passes the final budget, is not planning to cut NASA so deeply as it prepares its 2026 budget proposal. But on 24 September, Goddard managers began what they told employees was “a series of moves…that will reduce our footprint into fewer buildings”. The shift is intended to “bring down overall operating costs while maintaining the critical facilities we need for our core capabilities of the future”.

While this is part of a 20-year “master plan” for the GSFC that NASA’s leadership approved in 2019, the management’s memo stated that “all planned moves will take place over the next several months and be completed by March 2026″. A report in September by Democratic members of the Senate Committee on Commerce, Science, and Transportation, which is responsible for NASA, asserts that the cuts are “in clear violation of the [US] constitution [without] regard for the impacts on NASA’s science missions and workforce”.

On 3 November, the Goddard Engineers, Scientists and Technicians Association, a union representing NASA workers, reported that the GSFC had already closed over a third of its buildings, including some 100 labs. This had been done, it says, “with extreme haste and with no transparent strategy or benefit to NASA or the nation”. The union adds that the “closures are being justified as cost-saving but no details are being provided and any short-term savings are unlikely to offset a full account of moving costs and the reduced ability to complete NASA missions”.

Accounting for the damage

Zoe Lofgren, the lead Democrat on the House of Representatives Science Committee, has demanded of Sean Duffy, NASA’s acting administrator, that the agency “must now halt” any laboratory, facility and building closure and relocation activities at Goddard. In a  letter to Duffy dated 10 November, she also calls for the “relocation, disposal, excessing, or repurposing of any specialized equipment or mission-related activities, hardware and systems” to also end immediately.

Lofgren now wants NASA to carry out a “full accounting of the damage inflicted on Goddard thus far” by 18 November. Owing to the government shutdown, no GSFC or NASA official was available to respond to Physics World’s requests for a response.

Meanwhile, the Trump administration has renominated billionaire entrepreneur Jared Isaacman as NASA’s administrator. Trump had originally nominated Isaacman, who had flown on a private SpaceX mission and carried out spacewalk, on the recommendation of SpaceX founder Elon Musk. But the administration withdrew the nomination in May following concerns among some Republicans that Isaacman had funded the Democrat party.

The post NASA’s Goddard Space Flight Center hit by significant downsizing appeared first on Physics World.

Designing better semiconductor chips: NP hard problems and forever chemicals

13 novembre 2025 à 15:53

Like any major endeavour, designing and fabricating semiconductor chips requires compromise. As well as trade-offs between cost and performance, designers also consider carbon emissions and other environmental impacts.

In this episode of the Physics World Weekly podcast, Margaret Harris reports from the Heidelberg Laureate Forum where she spoke to two researchers who are focused on some of these design challenges.

Up first is Mariam Elgamal, who’s doing a PhD at Harvard University on the development of environmentally sustainable computing systems. She explains why sustainability goes well beyond energy efficiency and must consider the manufacturing process and the chemicals used therein.

Harris also chats with Andrew Gunter, who is doing a PhD at the University of British Columbia on circuit design for computer chips. He talks about the maths-related problems that must be solved in order to translate a desired functionality into a chip that can be fabricated.

 

The post Designing better semiconductor chips: NP hard problems and forever chemicals appeared first on Physics World.

High-resolution PET scanner visualizes mouse brain structures with unprecedented detail

13 novembre 2025 à 13:00

Positron emission tomography (PET) is used extensively within preclinical research, enabling molecular imaging of rodent brains, for example, to investigate neurodegenerative disease. Such imaging studies require the highest possible spatial resolution to resolve the tiny structures in the animal’s brain. A research team at the National Institutes for Quantum Science and Technology (QST) in Japan has now developed the first PET scanner to achieve sub-0.5 mm spatial resolution.

Submillimetre-resolution PET has been demonstrated by several research groups. Indeed, the QST team previously built a PET scanner with 0.55 mm resolution – sufficient to visualize the thalamus and hypothalamus in the mouse brain. But identification of smaller structures such as the amygdala and cerebellar nuclei has remained a challenge.

“Sub-0.5 mm resolution is important to visualize mouse brain structures with high quantification accuracy,” explains first author Han Gyu Kang. “Moreover, this research work will change our perspective about the fundamental limit of PET resolution, which had been regarded to be around 0.5 mm due to the positron range of [the radioisotope] fluorine-18”.

System optimization

With Monte Carlo simulations revealing that sub-0.5 mm resolution could be achievable with optimal detector parameters and system geometry, Kang and colleagues performed a series of modifications to their submillimetre-resolution PET (SR-PET) to create the new high-resolution PET (HR-PET) scanner.

The HR-PET, described in IEEE Transactions on Medical Imaging, is based around two 48 mm-diameter detector rings with an axial coverage of 23.4 mm. Each ring contains 16 depth-of-interaction (DOI) detectors (essential to minimize parallax error in a small ring diameter) made from three layers of LYSO crystal arrays stacked in a staggered configuration, with the outer layer coupled to a silicon photomultiplier (SiPM) array.

Compared with their previous design, the researchers reduced the detector ring diameter from 52.5 to 48 mm, which served to improve geometrical efficiency and minimize the noncollinearity effect. They also reduced the crystal pitch from 1.0 to 0.8 mm and the SiPM pitch from 3.2 to 2.4 mm, improving the spatial resolution and crystal decoding accuracy, respectively.

Other changes included optimizing the crystal thicknesses to 3, 3 and 5 mm for the first, second and third arrays, as well as use of a narrow energy window (440–560 keV) to reduce the scatter fraction and inter-crystal scattering events. “The optimized staggered three-layer crystal array design is also a key factor to enhance the spatial resolution by improving the spatial sampling accuracy and DOI resolution compared with the previous SR-PET,” Kang points out.

Performance tests showed that the HR-PET scanner had a system-level energy resolution of 18.6% and a coincidence timing resolution of 8.5 ns. Imaging a NEMA 22Na point source revealed a peak sensitivity at the axial centre of 0.65% for the 440–560 keV energy window and a radial resolution of 0.67±0.06 mm from the centre to 10 mm radial offset (using 2D filtered-back-projection reconstruction) – a 33% improvement over that achieved by the SR-PET.

To further evaluate the performance of the HR-PET, the researchers imaged a rod-based resolution phantom. Images reconstructed using a 3D ordered-subset-expectation-maximization (OSEM) algorithm clearly resolved all of the rods. This included the smallest rods with diameters of 0.5 and 0.45 mm, with average valley-to-peak ratios of 0.533 and 0.655, respectively – a 40% improvement over the SR-PET.

In vivo brain PET

The researchers then used the HR-PET for in vivo mouse brain imaging. They injected 18F-FITM, a tracer used to image the central nervous system, into an awake mouse and performed a 30 min PET scan (with the animal anesthetized) 42 min after injection. For comparison, they scanned the same mouse for 30 min with a preclinical Inveon PET scanner.

Mouse brain PET image
Imaging the mouse brain 3D maximum intensity projection image obtained from a 30-min HR-PET scan using 18F-FITM. High tracer uptake is seen in the cerebellum, thalamus and hypothalamus. Scale bar: 10 mm. (Courtesy: Han Gyu Kang)

After OSEM reconstruction, strong tracer uptake in the thalamus, hypothalamus, cerebellar cortex and cerebellar nuclei was clearly visible in the coronal HR-PET images. A zoomed image distinguished the cerebellar nuclei and flocculus, while sagittal and axial images visualized the cortex and striatum. Images from the Inveon, however, could barely resolve these brain structures.

The team also imaged the animal’s glucose metabolism using the tracer 18F-FDG. A 30 min HR-PET scan clearly delineated glucose transporter expression in the cortex, thalamus, hypothalamus and cerebellar nuclei. Here again, the Inveon could hardly identify these small structures.

The researchers note that the 18F-FITM and 18F-FDG PET images matched well with the anatomy seen in a preclinical CT scan. “To the best of our knowledge, this is the first separate identification of the hypothalamus, amygdala and cerebellar nuclei of mouse brain,” they write.

Future plans for the HR-PET scanner, says Kang, include using it for research on neurodegenerative disorders, with tracers that bind to amyloid beta or tau protein. “In addition, we plan to extend the axial coverage over 50 mm to explore the whole body of mice with sub-0.5 mm resolution, especially for oncological research,” he says. “Finally, we would like to achieve sub-0.3 mm PET resolution with more optimized PET detector and system designs.”

The post High-resolution PET scanner visualizes mouse brain structures with unprecedented detail appeared first on Physics World.

New experiments on static electricity cast doubt on previous studies in the field

13 novembre 2025 à 10:00

Static electricity is an everyday phenomenon, but it remains poorly understood. Researchers at the Institute of Science and Technology Austria (ISTA) have now shed new light on it by capturing an “image” of charge distributions as charge transfers from one surface to another. Their conclusions challenge longstanding interpretations of previous experiments and enhance our understanding of how charge behaves on insulating surfaces.

Static electricity is also known as contact electrification because it occurs when charge is transferred from one object to another by touch. The most common laboratory example involves rubbing a balloon on someone’s head to make their hair stand on end. However, static electricity is also associated with many other activities, including coffee grinding, pollen transport and perhaps even the formation of rocky planets.

One of the most useful ways of studying contact electrification is to move a metal tip slowly over the surface of a sample without touching it, recording a voltage all the while. These so-called scanning Kelvin methods produce an “image” of voltages created by the transferred charge. At the macroscale, around 100 μm to 10 cm, the main method is termed scanning Kelvin probe microscopy (SKPM). At the nanoscale, around 10  nm to 100  μm, a related but distinct variant known as Kelvin probe force microscopy (KPFM) is used instead.

In previous fundamental physics studies using these techniques, the main challenges have been to make sense of the stationary patterns of charge left behind after contact electrification, and to investigate how these patterns evolve over space and time. In the latest work, the ISTA team chose to ask a slightly different question: when are the dynamics of charge transfer too fast for measured stationary patterns to yield meaningful information?

Mapping the charge on the contact-electrified surface of a polymer film

To find out, ISTA PhD student Felix Pertl built a special setup that could measure a sample’s surface charge with KPFM; transfer it below a linear actuator so that it could exchange charge when it contacted another material; and then transfer it underneath the KPFM again to image the resulting change in the surface charge.

“In a typical set-up, the sample transfer, moving the AFM to the right place and reinitiation and recalibration of the KPFM parameters can easily take as long as tens of minutes,” Pertl explains. “In our system, this happens in as little as around 30 s. As all aspects of the system are completely automated, we can repeat this process, and quickly, many times.”

An experimental set-up to measure static electricity
Whole setup side view of the experiment: the counter-sample (white rod with green sample holder and PDMS at the very end) approaches the sample and induces electric charge via contact. The AFM head is on the left waiting until the sample returns to its original position. (Courtesy: Felix Pertl)

This speed-up is important because static electricity dissipates relatively rapidly. In fact, the researchers found that the transferred charge disappeared from the sample’s surface quicker than the time required for most KPFM scans. Their data also revealed that the deposited charge was, in effect, uniformly distributed across the surface and that its dissipation depended on the material’s electrical conductivity. Additional mathematical modelling and subsequent experiments confirmed that the more insulating a material is, the slower it dissipates charge.

Surface heterogeneity likely not a feature of static electricity

Pertl says that these results call into question the validity of some previous static electricity studies that used KPFM to study charge transfer. “The most influential paper in our field to date reported surface charge heterogeneity using KPFM,” he tells Physics World. At first, the ISTA team’s goal was to understand the origin of this heterogeneity. But when their own experiments showed an essentially homogenous distribution of surface charge, the researchers had to change tack.

“The biggest challenge in our work was realizing – and then accepting – that we could not reproduce the results from this previous study,” Pertl says. “Convincing both my principal investigator and myself that our data revealed a very different physical mechanism required patience, persistence and trust in our experimental approach.”

The discrepancy, he adds, implies that the surface heterogeneity previously observed was likely not a feature of static electricity, as was claimed. Instead, he says, it was probably “an artefact of the inability to image the charge before it had left the sample surface”.

A historical precedent

Studies of contact electrification studies go back a long way. Philippe Molinié of France’s GeePs Laboratory, who was not involved in this work, notes that the first experiments were performed by the English scientist William Gilbert clear back in the sixteenth century. As well as coining the term “electricity” (from the Greek “elektra”, meaning amber), Gilbert was also the first to establish that magnets maintain their electrical attraction over time, while the forces produced by contact-charged insulators slowly decrease.

“Four centuries later, many mysteries remain unsolved in the contact electrification phenomenon,” Molinié observes. He adds that the surfaces of insulating materials are highly complex and usually strongly disordered, which affects their ability to transfer charge at the molecular scale. “The dynamics of the charge neutralization, as Pertl and colleagues underline, is also part of the process and is much more complex than could be described by a simple resistance-capacitor model,” Molinié says.

Although the ISTA team studied these phenomena with sophisticated Kelvin probe microscopy rather than the rudimentary tools available to Gilbert, it is, Molinié says, “striking that the competition between charge transfer and charge screening that comes from the conductivity of an insulator, first observed by Gilbert, is still at the very heart of the scientific interrogations that this interesting new work addresses.”

“A more critical interpretation”

The Austrian researchers, who detail their work in Phys. Rev. Lett., say they hope their experiments will “encourage a more critical interpretation” of KPFM data in the future, with a new focus on the role of sample grounding and bulk conductivity in shaping observed charge patterns. “We hope it inspires KPFM users to reconsider how they design and analyse experiments, which could lead to more accurate insights into charge behaviour in insulators,” Pertl says.

“We are now planning to deliberately engineer surface charge heterogeneity into our samples,” he reveals. “By tuning specific surface properties, we aim to control the sign and spatial distribution of charge on defined regions of these.”

The post New experiments on static electricity cast doubt on previous studies in the field appeared first on Physics World.

❌