Learn more about the Chi Cygnid Meteor Shower, a rare shower that seems to grow every five years and will appear this September 2025, peaking between September 13, 2025, and September 15, 2025.
The idea of a human mission to explore Mars has been studied repeatedly over the past 75 years. More than 1,000 piloted Mars mission studies were conducted inside and outside NASA between about 1950 and 2000. Many were the product of NASA and industry study teams, while others were the work of committed individuals or […]
Cailabs, a French company that manufactures optical ground stations for satellite communications, has raised 57 million euros ($67 million) to scale up production.
A new high-speed multifocus microscope could facilitate discoveries in developmental biology and neuroscience thanks to its ability to image rapid biological processes over the entire volume of tiny living organisms in real time.
The pictures from many 3D microscopes are obtained sequentially by scanning through different depths, making them too slow for accurate live imaging of fast-moving natural functions in individual cells and microscopic animals. Even current multifocus microscopes that capture 3D images simultaneously have either relatively poor image resolution or can only image to shallow depths.
“Because the M25 microscope is geared towards advancing biomedical imaging we wanted to push the boundaries for speed, high resolution and looking at large volumes with a high signal-to-noise ratio,” says Hirata-Miyasaki, who is now based in the Chan Zuckerberg Biohub in San Francisco.
The M25, detailed in Optica, builds on previous diffractive-based multifocus microscopy work by Abrahamsson, explains Hirata-Miyasaki. In order to capture multiple focal planes simultaneously, the researchers devised a multifocus grating (MFG) for the M25. This diffraction grating splits the image beam coming from the microscope into a 5 × 5 grid of evenly illuminated 2D focal planes, each of which is recorded on one of the 25 synchronized machine vision cameras, such that every camera in the array captures a 3D volume focused on a different depth. To avoid blurred images, a custom-designed blazed grating in front of each camera lens corrects for the chromatic dispersion (which spreads out light of different wavelengths) introduced by the MFG.
The team used computer simulations to reveal the optimal designs for the diffractive optics, before creating them at the University of California Santa Barbara nanofabrication facility by etching nanometre-scale patterns into glass. To encourage widespread use of the M25, the researchers have published the fabrication recipes for their diffraction gratings and made the bespoke software for acquiring the microscope images open source. In addition, the M25 mounts to the side port of a standard microscope, and uses off-the-shelf cameras and camera lenses.
The M25 can image a range of biological systems, since it can be used for fluorescence microscopy – in which fluorescent dyes or proteins are used to tag structures or processes within cells – and can also work in transmission mode, in which light is shone through transparent samples. The latter allows small organisms like C.elegans larvae, which are commonly used for biological research, to be studied without disrupting them.
The researchers performed various imaging tests using the prototype M25, including observations of the natural swimming motion of entire C.elegans larvae. This ability to study cellular-level behaviour in microscopic organisms over their whole volume may pave the way for more detailed investigations into how the nervous system of C. elegans controls its movement, and how genetic mutations, diseases or medicinal drugs affect that behaviour, Hirata-Miyasaki tells Physics World. He adds that such studies could further our understanding of human neurodegenerative and neuromuscular diseases.
“We live in a 3D world that is also very dynamic. So with this microscope I really hope that we can keep pushing the boundaries of acquiring live volumetric information from small biological organisms, so that we can capture interactions between them and also [see] what is happening inside cells to help us understand the biology,” he continues.
As part of his work at the Chan Zuckerberg Biohub, Hirata-Miyasaki is now developing deep-learning models for analysing dynamic cell and organism multichannel dynamic live datasets, like those acquired by the M25, “so that we can extract as much information as possible and learn from their dynamics”.
Meanwhile Abrahamsson, who is currently working in industry, hopes that other microscopy development labs will make their own M25 systems. She is also considering commercializing the instrument to help ensure its widespread use.
Learn more about the biological mechanism behind the tongue movement of chameleons and salamanders, which could contribute to critical technological breakthroughs.
CEO Jason Kim said the company’s Alpha vehicle could launch test targets while the Elytra platform could host interceptors for the Golden Dome missile-defense shield
PARIS – Mobile edge computing specialist Armada and Sophia Space are working together to establish integrated, scalable compute infrastructure extending from Earth to space. By connecting terrestrial and orbital edge processors, the partners intend to “create a seamless edge-computing network that connects remote locations on Earth with computing resources in space,” according to the Sept. […]
In this week’s episode of Space Minds, host Mike Gruss is joined by SpaceNews senior writer Jeff Foust to break down the surprising appointment of Sean Duffy as NASA’s Acting Administrator.
This episode of the Physics World Weekly podcast features Scott Bolton, who is principal investigator on NASA’s Juno mission to Jupiter. Launched in 2011, the mission has delivered important insights into the nature of the gas-giant planet. In this conversation with Physics World’s Margaret Harris, Bolton explains how Juno continues to change our understanding of Jupiter and other gas giants.
Bolton and Harris chat about the mission’s JunoCam, which has produced some gorgeous images of Jupiter and it moons.
Although the Juno mission was expected to last only a few years, the spacecraft is still going strong despite operating in Jupiter’s intense radiation belts. Bolton explains how the Juno team has rejuvenated radiation-damaged components, which has provided important insights for those designing future missions to space.
However Juno’s future is uncertain. Despite its great success, the mission is currently scheduled to end at the end of September, which is something that Bolton also addresses in the conversation.
House appropriators offered support, but no specific funding, for several NASA missions slated for cancellation in the administration’s 2026 budget proposal.
A combination of static proton arcs and shoot-through proton beams could increase plan conformity and homogeneity and reduce delivery times in upright proton therapy, according to new research from RaySearch Laboratories in Sweden.
Proton arc therapy (PAT) is an emerging rotational delivery technique with potential to improve plan quality – reducing dose to organs-at-risk while maintaining target dose. The first clinical PAT treatments employed static arcs, in which multiple energy layers are delivered from many (typically 10 to 30) discrete angles. Importantly, static arc PAT can be delivered on conventional proton therapy machines. It also offers simpler beam arrangements than intensity-modulated proton therapy (IMPT).
“In IMPT of head-and-neck cancers, the beam directions are normally set up in a complicated pattern in different planes, with range shifters needed to treat the shallow part of the tumour,” explains Erik Engwall, chief physicist at RaySearch Laboratories. “In PAT, the many beam directions are arranged in the same plane and no range shifters are typically needed. With all beams in the same plane, it is easier to move to upright treatments.”
Upright proton therapy involves rotating the patient (in an upright position) in front of a static horizontal treatment beam. The approach could reduce costs by using compact proton delivery systems. This compactness, however, places energy selection close to the patient, increasing scattering in the proton beam. To combat this, the team propose adding a layer of shoot-through protons to each direction of the proton arc.
The idea is that while most protons are delivered with Bragg peaks placed in the target, the sharp penumbra of the high-energy protons shooting through the target will combat beam broadening. The rotational delivery in the proton arc spreads the exit dose from these shoot-through beams over many angles, minimizing dose to surrounding tissues. And as the beamline is fixed, shoot-through protons exit in the same direction (behind the patient) for all angles, simplifying shielding to a single beam dump opposite the fixed beam.
Simulation studies
To test this approach, Engwall and colleagues simulated treatment plans for a virtual phantom containing three targets and an organ-at-risk, reporting their findings in Medical Physics. They used a development version of RayStation v2025 with a beam model of the Mevion s250-FIT system (which combines a compact cyclotron, an upright positioner and an in-room CT scanner).
For each target, the team created static arc plans with (Arc+ST) and without shoot-through beams and with/without collimation, as well as 3-beam IMPT plans with and without shoot-through beams (all with collimation). Arc plans used 20 uniformly spaced beam directions, and the shoot-through plans included an additional layer of the highest system energy (230 MeV) for each direction.
For all targets, Arc+ST plans showed superior conformity, homogeneity and target robustness to arc plans without shoot-through protons. Adding collimation slightly improved the arc plans without shoot-through protons but had little impact on Arc+ST plans.
The IMPT plans achieved similar homogeneity and robustness to the best arc plans, but with far lower conformity due to the shoot-through protons delivering a concentrated exit dose behind the target (while static arcs distribute this dose over many directions). Adding shoot-through protons improved IMPT plan quality, but to a lesser degree than for PAT plans.
Clinical case
The researchers repeated their analysis for a clinical head-and-neck cancer case, comparing static arcs with 5-beam IMPT. Again, Arc+ST plans performed better than any others for almost all metrics. “The Arc+ST plans have the best quality due to the sharpening of the penumbra of the shoot-through part, even better than when using a collimator,” says Engwall.
Plan comparisons (a) Static arc with an additional shoot-through layer, (b) partial static arcs with collimation and (c) 5-beam collimated plan. Panel (d) shows the shoot-through portion of the dose distribution in (a). Dose–volume histograms are displayed for the targets and representative organs-at-risk. (Courtesy: CC BY 4.0/Med. Phys. 10.1002/mp.18051)
Notably, the findings suggest that collimation is not needed when combining arcs with shoot-through beams, enabling rapid treatments. With fast energy switching and the patient rotation at 1 rpm, Arc+ST achieved an estimated delivery time of less than 5.4 min – faster than all other plans for this case, including 5-beam IMPT.
“Treatment time is reduced when the leaves of the dynamic collimator do not need to move,” Engwall explains. “There is also no risk of mechanical failures of the collimator and the secondary neutron production will be lower when there are fewer objects in the beamline.”
Another benefit of upright delivery is that the shoot-through protons can be used for range verification during treatments, using a detector integrated into the beam dump behind the patient. The team investigated this concept with three simulated error scenarios: 5% systematic shift in stopping power ratio; 5 mm setup shift; and 2 cm shoulder movement. The technique successfully detected all errors.
As the range detector is permanently installed in the treatment room and the shoot-through protons are part of the treatment plan, this method does not add time to the patient setup and can be used in every treatment fraction to detect both intra- and inter-fraction uncertainties.
Although this is a proof-of-concept study, the researchers conclude that it highlights the combined advantages of the new treatment technique, which could “leverage the potential of compact upright proton treatments and make proton treatments more affordable and accessible to a larger patient group”.
Engwall tells Physics World that the team is now collaborating with several clinical research partners to investigate the technique’s potential across larger patient data sets, for other treatment sites and multiple treatment machines.