↩ Accueil

Vue lecture

Il y a de nouveaux articles disponibles, cliquez pour rafraîchir la page.

New superconductor has record breaking current density

A superconducting wire segment based on rare-earth barium copper oxide (REBCO) is the highest performing yet in terms of current density, carrying 190 MA/cm2 in the absence of any external magnetic field at a temperature of 4.2 K. At warmer temperatures of 20 K (which is the proposed application temperature for magnets used in commercial nuclear fusion reactors), the wires can still carry over 150 MA/cm2. These figures mean that the wire, despite being only 0.2 micron thick, can carry a current comparable to that of commercial superconducting wires that are almost 10 times thicker, according to its developers at the University at Buffalo in the US.

High-temperature superconducting (HTS) wires could be employed in a host of applications, including energy generation, storage and transmission, transportation, and in the defence and medical sectors. They might also be used in commercial nuclear fusion, offering the possibility of limitless clean energy. Indeed, if successful, this niche application could help address the world’s energy supply issues, says Amit Goyal of the University at Buffalo’s School of Engineering and Applied Science, who co-led this new study.

Record-breaking critical current density and pinning force

Before such large-scale applications see the light of day, however, the performance of HTS wires must be improved – and their cost reduced. Goyal and colleagues’ new HTS wire has the highest values of critical current density reported to date. This is particularly true at lower operating temperatures ranging from 4.2–30 K, which is of interest for the fusion application. While still extremely cold, these are much higher than the absolute zero temperatures that traditional superconductors function at, says Goyal.

And that is not all, the wires also have the highest pinning force (that is, the ability to hold magnetic vortices) ever reported for such wires: around 6.4 TN/m3 per cubic metre at 4.2 K and about 4.2 TN/m3 at 20 K, both under a 7 T applied magnetic field.

“Prior to this work, we did not know if such levels of critical current density and pinning were possible to achieve,” says Goyal.

The researchers made their wire using a technique called pulsed laser deposition. Here, a laser beam impinges on a target material and ablates material that is deposited as a film on the substrate, explains Goyal. “This technique is employed by a majority of HTS wire manufacturers. In our experiment, the high critical current density was made possible thanks to a combination of pinning effects from rare-earth doping, oxygen-point defects and insulating barium zirconate nanocolumns as well as optimization of deposition conditions.”

This is a very exciting time for the HTS field, he tells Physics World. “We have a very important niche large-scale application – commercial nuclear fusion. Indeed, one company, Commonwealth Fusion, has invested $1.8bn in series B funding. And within the last 5 years, almost 20 new companies have been founded around the world to commercialize this fusion technology.”

Goyal adds that his group’s work is just the beginning and that “significant performance enhancements are still possible”. “If HTS wire manufacturers work on optimizing the conditions under which the wires are deposited, they should be able to achieve a much higher critical current density, which will result in much better price/performance metric for the wires and enable applications. Not just in fusion, but all other large-scale applications as well.”

The researchers say they now want to further enhance the critical current density and pinning force of their 0.2 micron-thick wires. “We also want to demonstrate thicker films that can carry much higher current,” says Goyal.

They describe their HTS wires in Nature Communications.

The post New superconductor has record breaking current density appeared first on Physics World.

The physics of cycling’s ‘Everesting’ challenge revealed

“Everesting” involves a cyclist riding up and down a given hill multiple times until the ascent totals the elevation of Mount Everest – or 8848 m.

The challenge became popular during the COVID-19 lockdowns and in 2021 the Irish cyclist Ronan McLaughlin was reported to have set a new “Everesting” record of 6:40:54. This was almost 20 minutes faster than the previous world record of 6:59:38 set by the US’s Sean Gardner in 2020.

Yet a debate soon ensued on social media concerning the significant tailwind that day of 5.5 meters per second, which they claimed would have helped McLaughlin to climb the hill multiple times.

But did it? To investigate, Martin Bier, a physicist at East Carolina University in North Carolina, has now analysed what effect air resistance might have when cycling up and down a hill.

“Cycling uses ‘rolling’, which is much smoother and faster, and more efficient [than running],” notes Bier. “All of the work is purely against gravity and friction.”

Bier calculated that a tailwind does help slightly when going uphill, but most of the work when doing so is generating enough power to overcome gravity rather than air resistance.

When coming downhill, however, any headwind becomes significant given that the force of air resistance increases with the square of the cyclist’s speed. The headwind can then have a huge effect, causing a significant reduction in speed.

So, while a tailwind going up is negligible the headwind coming down certainly won’t be. “There are no easy tricks,” Bier adds. “If you want to be a better Everester, you need to lose weight and generate more [power]. This is what matters — there’s no way around it.”

The post The physics of cycling’s ‘Everesting’ challenge revealed appeared first on Physics World.

Air-powered computers make a comeback

A device containing a pneumatic logic circuit made from 21 microfluidic valves could be used as a new type of air-powered computer that does not require any electronic components. The device could help make a wide range of important air-powered systems safer and less expensive, according to its developers at the University of California at Riverside.

Electronic computers rely on transistors to control the flow of electricity. But in the new air-powered computer, the researchers use tiny valves instead of transistors to control the flow of air rather than electricity. “These air-powered computers are an example of microfluidics, a decades-old field that studies the flow of fluids (usually liquids but sometimes gases) through tiny networks of channels and valves,” explains team leader William Grover, a bioengineer at UC Riverside.

By combining multiple microfluidic valves, the researchers were able to make air-powered versions of standard logic gates. For example, they combined two valves in a row to make a Boolean AND gate. This gate works because air will flow through the two valves only if both are open. Similarly, two valves connected in parallel make a Boolean OR gate. Here, air will flow if either one or the other of the valves is open.

Complex logic circuits

Combining an increasing number of microfluidic valves enables the creation of complex air-powered logic circuits. In the new study, detailed in Device, Grover and colleagues made a device that uses 21 microfluidic valves to perform a parity bit calculation – an important calculation employed by many electronic computers to detect errors and other problems.

The novel air-powered computer detects differences in air pressure flowing through the valves to count the number of bits. If there is an error, it outputs an error signal by blowing a whistle. As a proof-of-concept, the researchers used their device to detect anomalies in an intermittent pneumatic compression (IPC) device – a leg sleeve that fills with air and regularly squeezes a patient’s legs to increase blood flow, with the aim of preventing blood clots that could lead to strokes. Normally, these machines are monitored using electronic equipment.

“IPC devices can save lives, but they aren’t as widely employed as they could be,” says Grover. “In part, this is because they’re so expensive. We wanted to see if we could reduce their cost by replacing some of their electronic hardware with pneumatic logic.”

Air’s viscosity is important

Air-powered computers behave very similarly, but not quite identically to electronic computers, Grover adds. “For example, we can often take an existing electronic circuit and make an air-powered version of it and it’ll work just fine, but at other times the air-powered device will behave completely differently and we have to tweak the design to make it function.”

The variations between the two types of computers come down to one important physical difference between electricity and air, he explains: electricity does not have viscosity, but air does. “There are also lots of little design details that are of little consequence in electronic circuits but which become important in pneumatic circuits because of air’s viscosity. This makes our job a bit harder, but it also means we can do things with pneumatic logic that aren’t possible – or are much harder to do – with electronic logic.”

In this work, the researchers focused on biomedical applications for their air-powered computer, but they say that this is just the “tip of the iceberg” for this technology. Air-powered systems are ubiquitous, from the brakes on a train, to assembly-line robots and medical ventilators, to name but three. “By using air-powered computers to operate and monitor these systems, we could make these important systems more affordable, more reliable and safer,” says Grover.

“I have been developing air-powered logic for around 20 years now, and we’re always looking for new applications,” he tells Physics World. “What is more, there are areas in which they have advantages over conventional electronic computers.”

One specific application of interest is moving grain inside silos, he says. These enormous structures hold grain and other agricultural products and people often have to climb inside to spread out the grain – an extremely dangerous task because they can become trapped and suffocate.

“Robots could take the place of humans here, but conventional electronic robots could generate electronic sparks that could create flammable dust inside the silo,” Grover explains. “An air-powered robot, on the other hand, would work inside the silo without this risk. We are thus working on an air-powered ‘brain’ for such a robot to keep people out of harm’s way.”

Air-powered computers aren’t a new idea, he adds. Decades ago, there was a multitude of devices being designed that ran on water or air to perform calculations. Air-powered computers fell out of favour, however, when transistors and integrated circuits made electronic computers feasible. “We’ve therefore largely forgotten the history of computers that ran on things other than electricity. Hopefully, our new work will encourage more researchers to explore new applications for these devices.”

The post Air-powered computers make a comeback appeared first on Physics World.

Quantum hackathon makes new connections

Par : No Author

It is said that success breeds success, and that’s certainly true of the UK’s Quantum Hackathon – an annual event organized by the National Quantum Computing Centre (NQCC) that was held in July at the University of Warwick. Now in its third year, the 2024 hackathon attracted 50% more participants from across the quantum ecosystem, who tackled 13 use cases set by industry mentors from the private and public sectors. Compared to last year’s event, participants were given access to a greater range of technology platforms, including software control systems as well as quantum annealers and physical processors, and had an additional day to perfect and present their solutions.

The variety of industry-relevant problems and the ingenuity of the quantum-enabled solutions were clearly evident in the presentations on the final day of the event. An open competition for organizations to submit their problems yielded use cases from across the public and private spectrum, including car manufacturing, healthcare and energy supply. While some industry partners were returning enthusiasts, such as BT and Rolls Royce, newcomers to the hackathon included chemicals firm Johnson Matthey, Aioi R&D Lab (a joint venture between Oxford University spin-out Mind Foundry and the global insurance brand Aioi Nissay Dowa) and the North Wales Police.

“We have a number of problems that are beyond the scope of standard artificial intelligence (AI) or neural networks, and we wanted to see whether a quantum approach might offer a solution,” says Alastair Hughes, lead for analytics and AI at North Wales Police. “The results we have achieved within just two days have proved the feasibility of the approach, and we will now be looking at ways to further develop the model by taking account of some additional constraints.”

The specific use case set by Hughes was to optimize the allocation of response vehicles across North Wales, which has small urban areas where incidents tend to cluster and large swathes of countryside where the crime rate is low. “Our challenge is to minimize response times without leaving some of our communities unprotected,” he explains. “At the moment we use a statistical process that needs some manual intervention to refine the configuration, which across the whole region can take a couple of months to complete. Through the hackathon we have seen that a quantum neural network can deliver a viable solution.”

Teamwork
Problem solving Each team brought together a diverse range of skills, knowledge and experience to foster learning and accelerate the development process. (Courtesy: NQCC)

While Hughes had no prior experience with using quantum processors, some of the other industry mentors are already investigating the potential benefits of quantum computing for their businesses. At Rolls Royce, for example, quantum scientist Jarred Smalley is working with colleagues to investigate novel approaches for simulating complex physical processes, such as those inside a jet engine. Smalley has mentored a team at all three hackathons, setting use cases that he believes could unlock a key bottleneck in the simulation process.

The hackathon offers a way for us to break into the current state of the technology and to see what can be done with today’s quantum processors

“Some of our crazy problems are almost intractable on a supercomputer, and from that we extract a specific set of processes where a quantum algorithm could make a real impact,” he says. “At Rolls Royce our research tends to be focused on what we could do in the future with a fault-tolerant quantum computer, and the hackathon offers a way for us to break into the current state of the technology and to see what can be done with today’s quantum processors.”

Since the first hackathon in 2022, Smalley says that there has been an improvement in the size and capabilities of the hardware platforms. But perhaps the biggest advance has been in the software and algorithms available to help the hackers write, test and debug their quantum code. Reflecting that trend in this year’s event was the inclusion of software-based technology providers, such as Q-CTRL’s Fire Opal and Classiq, that provide tools for error suppression and optimizing quantum algorithms. “There are many more software resources for the hackers to dive into, including algorithms that can even analyse the problems themselves,” Smalley says.

Cathy White, a research manager at BT who has mentored a team at all three hackathons, agrees that rapid innovation in hardware and software is now making it possible for the hackers to address real-world problems – which in her case was to find the optimal way to position fault-detecting sensors in optical networks. “I wanted to set a problem for which we could honestly say that our classical algorithms can’t always provide a good approximation,” she explained. “We saw some promising results within the time allowed, and I’m feeling very positive that quantum computers are becoming useful.”

Both White and Smalley could see a significant benefit from the extended format, which gave hackers an extra day to explore the problem and consider different solution pathways. The range of technology providers involved in the event also enabled the teams to test their solutions on different platforms, and to adapt their approach if they ran into a problem. “With the extra time my team was able to use D-Wave’s quantum annealer as well as a gate-model approach, and it was impressive to see the diversity of algorithms and approaches that the students were able to come up with,” White comments. “They also had more scope to explore different aspects of the problem, and to consolidate their results before deciding what they wanted to present.”

One clear outcome from the extended format was more opportunity to benchmark the quantum solutions against their classical counterparts. “The students don’t claim quantum advantage without proper evidence,” adds White. “Every year we see remarkable progress in the technology, but they can help us to see where there are still challenges to be overcome.”

According to Stasja Stanisic from Phasecraft, one of the four-strong judging panel, a robust approach to benchmarking was one of the stand-out factors for the winning team. Mentored by Aioi R&D Lab, the team investigated a risk aggregation problem, which involved modelling dynamic relationships between data such as insurance losses, stock market data and the occurrence of natural disasters. “The winning team took time to really understand the problem, which allowed them to adapt their algorithm to match their use-case scenario,” Stanisic explains. “They also had a thorough and structured approach to benchmarking their results against other possible solutions, which is an important comparison to make.”

The team presenting their results
Learning points Presentations on the final day of the event enabled each team to share their results with other participants and a four-strong judging panel. (Courtesy: NQCC)

Teams were judged on various criteria, including the creativity of the solution, its success in addressing the use case, and investigation of scaling and feasibility. The social impact and ethical considerations of their solution was also assessed. Using the NQCC’s Quantum STATES principles for responsible and ethical quantum computing (REQC), which were developed and piloted at the NQCC, the teams, for example, considered the potential impact of their innovation on different stakeholders and the explainability of their solution. They also proposed practical recommendations to maximize societal benefit. While many of their findings were specific to their use cases, one common theme was the need for open and transparent development processes to build trust among the wider community.

“Quantum computing is an emerging technology, and we have the opportunity right at the beginning to create an environment where ethical considerations are discussed and respected,” says Stanisic. “Some of the teams showed some real depth of thought, which was exciting to see, while the diverse use cases from both the public and private sectors allowed them to explore these ethical considerations from different perspectives.”

Also vital for participants was the chance to link with and learn from their peers. “The hackathon is a place where we can build and maintain relationships, whether with the individual hackers or with the technology partners who are also here,” says Smalley. For Hughes, meanwhile, the ability to engage with quantum practitioners has been a game changer. “Being in a room with lots of clever people who are all sparking off each other has opened my eyes to the power of quantum neural networks,” he says. “It’s been phenomenal, and I’m excited to see how we can take this forward at North Wales Police.”

  • To take part in the 2025 Quantum Hackathon – whether as a hacker, an industry mentor or technology provider – please e-mail the NQCC team at nqcchackathon@stfc.ac.uk

The post Quantum hackathon makes new connections appeared first on Physics World.

Rheo-electric measurements to predict battery performance from slurry processing

Par : No Author

The market for lithium-ion batteries (LIBs) is expected to grow ~30x to almost 9 TWh produced annually in 2040 driven by demand from electric vehicles and grid scale storage. Production of these batteries requires high-yield coating processes using slurries of active material, conductive carbon, and polymer binder applied to metal foil current collectors. To better understand the connections between slurry formulation, coating conditions, and composite electrode performance we apply new Rheo-electric characterization tools to battery slurries. Rheo-electric measurements reveal the differences in carbon black structure in the slurry that go undetected by rheological measurements alone. Rheo-electric results are connected to characterization of coated electrodes in LIBs in order to develop methods to predict the performance of a battery system based on the formulation and coating conditions of the composite electrode slurries.

Jeffrey Richards (left) and Jeffrey Lopez (right)

Jeffrey Richards is an assistant professor of chemical and biological engineering at Northwestern University. His research is focused on understanding the rheological and electrical properties of soft materials found in emergent energy technologies.

Jeffrey Lopez is an assistant professor of chemical and biological engineering at Northwestern University. His research is focused on using fundamental chemical engineering principles to study energy storage devices and design solutions to enable accelerated adoption of sustainable energy technologies.



The post Rheo-electric measurements to predict battery performance from slurry processing appeared first on Physics World.

Simultaneous structural and chemical characterization with colocalized AFM-Raman

Par : No Author

The combination of Atomic Force Microscopy (AFM) and Raman spectroscopy provides deep insights into the complex properties of various materials. While Raman spectroscopy facilitates the chemical characterization of compounds, interfaces and complex matrices, offering crucial insights into molecular structures and compositions, including microscale contaminants and trace materials. AFM provides essential data on topography and mechanical properties, such as surface texture, adhesion, roughness, and stiffness at the nanoscale.

Traditionally, users must rely on multiple instruments to gather such comprehensive analysis. HORIBA’s AFM-Raman system stands out as a uniquely multimodal tool, integrating an automated AFM with a Raman/photoluminescence spectrometer, providing precise pixel-to-pixel correlation between structural and chemical information in a single scan.

This colocalized approach is particularly valuable in applications such as polymer analysis, where both surface morphology and chemical composition are critical; in semiconductor manufacturing, for detecting defects and characterizing materials at the nanoscale; and in life sciences, for studying biological membranes, cells, and tissue samples. Additionally, it’s ideal for battery research, where understanding both the structural and chemical evolution of materials is key to improving performance.

João Lucas Rangel

João Lucas Rangel currently serves as the AFM & AFM-Raman global product manager at HORIBA and holds a PhD in biomedical engineering. Specializing in Raman, infrared, and fluorescence spectroscopies, his PhD research was focused on skin dermis biochemistry changes. At HORIBA Brazil, João started in 2012 as molecular spectroscopy consultant, transitioning into a full-time role as an application scientist/sales support across Latin America, expanding his responsibilities, overseeing the applicative sales support, and co-management of the business activities within the region. In 2022, João was invited to join HORIBA France as a correlative microscopy – Raman application specialist, being responsible to globally develop the correlative business, combing HORIBA’s existing technologies with other complementary technologies. More recently, in 2023, João was promoted to the esteemed position of AFM & AFM-Raman global product manager. In this role, João oversees strategic initiatives aiming at the company’s business sustainability and future development, ensuring its continued success and future growth.

The post Simultaneous structural and chemical characterization with colocalized AFM-Raman appeared first on Physics World.

❌