New Head of Trump’s Cancer Panel Speculated About Links Between Vaccines and Cancer


In this episode of Space Minds, host Sandra Erwin sits down with former NASA astronaut and Space Force leader Brig. Gen. Nick Hague for a wide-ranging conversation on how the U.S. Space Force is shaping its culture, training Guardians, and preparing for future conflict in space.
The post How the Space Force trains Guardians for the future of warfare appeared first on SpaceNews.
Physicists searching for signs of quantum gravity have long faced a frustrating problem. Even if gravity does have a quantum nature, its effects are expected to show up only at extremely small distances, far beyond the reach of experiments. A new theoretical study by Benjamin Koch and colleagues at the Technical University of Vienna in Austria suggests a different strategy. Instead of looking for quantum gravity where space–time is tiny, the researchers argue that subtle quantum effects could influence how particles and light move across huge cosmical distances.
Their work introduces a new concept called q-desics, short for quantum-corrected paths through space–time. These paths generalize the familiar trajectories predicted by Einstein’s general theory of relativity and could, in principle, leave observable fingerprints in cosmology and astrophysics.
General relativity and quantum mechanics are two of the most successful theories in physics, yet they describe nature in radically different ways. General relativity treats gravity as the smooth curvature of space–time, while quantum mechanics governs the probabilistic behavior of particles and fields. Reconciling the two has been one of the central challenges of theoretical physics for decades.
“One side of the problem is that one has to come up with a mathematical framework that unifies quantum mechanics and general relativity in a single consistent theory,” Koch explains. “Over many decades, numerous attempts have been made by some of the most brilliant minds humanity has to offer.” Despite this effort, no approach has yet gained universal acceptance.
There is another, perhaps deeper difficulty. “We have little to no guidance, neither from experiments nor from observations that could tell us whether we actually are heading in the right direction or not,” Koch says. Without experimental clues, many ideas about quantum gravity remain largely speculative.
That does not mean the quest lacks value. Fundamental research often pays off in unexpected ways. “We rarely know what to expect behind the next tree in the jungle of knowledge,” Koch says. “We only can look back and realize that some of the previously explored trees provided treasures of great use and others just helped us to understand things a little better.”
Almost every test of general relativity relies on a simple assumption. Light rays and freely falling particles follow specific paths, known as geodesics, determined entirely by the geometry of space–time. From gravitational lensing to planetary motion, this idea underpins how physicists interpret astronomical data.
Koch and his collaborators asked what happens to this assumption when space–time itself is treated as a quantum object. “Almost all interpretations of observational astrophysical and astronomical data rest on the assumption that in empty space light and particles travel on a path which is described by the geodesic equation,” Koch says. “We have shown that in the context of quantum gravity this equation has to be generalized.”
The result is the q-desic equation. Instead of relying only on an averaged, classical picture of space–time, q-desics account for the underlying quantum structure more directly. In practical terms, this means that particles may follow paths that deviate slightly from those predicted by classical general relativity, even when space–time looks smooth on average.
Crucially, the team found that these deviations are not confined to tiny distances. “What makes our first results on the q-desics so interesting is that apart from these short distance effects, there are also long range effects possible, if one takes into account the existence of the cosmological constant,” Koch says.
This opens the door to possible tests using existing astronomical data. According to the study, q-desics could differ from ordinary geodesics over cosmological distances, affecting how matter and light propagate across the universe.
“The q-desics might be distinguished from geodesics at cosmological large distances,” Koch says, “which would be an observable manifestation of quantum gravity effects.”
The researchers propose revisiting cosmological observations. “Currently, there are many tensions popping up between the Standard Model of cosmology and observed data,” Koch notes. “All these tensions are linked, one way or another, to the use of geodesics at vastly different distance scales.” The q-desic framework offers a new lens through which to examine such discrepancies.
So far, the team has explored simplified scenarios and idealized models of quantum space–time. Extending the framework to more realistic situations will require substantial effort.
“The initial work was done with one PhD student (Ali Riahina) and one colleague (Ángel Rincón),” Koch says. “There are many things to be revisited and explored that our to-do list is growing far too long for just a few people.” One immediate goal is to encourage other researchers to engage with the idea and test it in different theoretical settings.
Whether q-desics will provide an observational window into quantum gravity remains to be seen. But by shifting attention from the smallest scales to the largest structures in the cosmos, the work offers a fresh perspective on an enduring problem.
The research is described in Physical Review D.
The post Motion through quantum space–time is traced by ‘q-desics’ appeared first on Physics World.


The Trump administration’s new national security strategy has rightly drawn criticism for presuming to tell our European allies how to arrange their domestic affairs. Equally as baffling is its near silence on a genuine United States national security concern — bolstering our offensive and defensive capabilities in space. Amid much MAGA trollery that blames Europe […]
The post Trump’s national security strategy ignores space appeared first on SpaceNews.

Firms aim to link air and ground platforms using visual positioning technology
The post Vantor partners with Niantic Spatial on GPS-free navigation for defense market appeared first on SpaceNews.

SAN FRANCISCO – EraDrive, a Stanford University spinoff developing software and hardware for satellite autonomy, raised $5.3 million in an oversubscribed seed round, the startup announced Dec. 16. “EraDrive is very much about this idea of the self-driving spacecraft,” Justin Kruger, EraDrive chief technology officer and co-founder, told SpaceNews. EraDrive is developing a software-hardware module […]
The post EraDrive raises $5.3 million for software-hardware kits to enhance satellite autonomy appeared first on SpaceNews.

A reported close approach between a Starlink satellite and a recently launched Chinese spacecraft highlights the challenges of coordinating spacecraft operations and verifying potential close calls in orbit.
The post SpaceX claims close approach to Starlink satellite by payload from Chinese launch appeared first on SpaceNews.
The International Year of Quantum Science and Technology has celebrated all the great developments in the sector – but what challenges and opportunities lie in store? That was the question deliberated by four future leaders in the field at the Royal Institution in central London in November. The discussion took place during the two-day conference “Quantum science and technology: the first 100 years; our quantum future”, which was part of a week-long series of quantum-related events in the UK organized by the Institute of Physics.
As well as outlining the technical challenges in their fields, the speakers all stressed the importance of developing a “skills pipeline” so that the quantum sector has enough talented people to meet its needs. Also vital will be the need to communicate the mysteries and potential of quantum technology – not just to the public but to industrialists, government officials and venture capitalists.
Two of the speakers – Nicole Gillett (Riverlane) and Muhammad Hamza Waseem (Quantinuum) – are from the quantum tech industry, with Mehul Malik (Heriot-Watt University) and Sarah Alam Malik (University College London) based in academia. The following is an edited version of the discussion.

Nicole Gillett is a senior software engineer at Riverlane, in Cambridge, UK. The company is a leader in quantum error correction, which is a critical part of a fully functioning, fault-tolerant quantum computer. Errors arise because quantum bits, or qubits, are so fragile and correcting them is far trickier than with classical devices. Riverlane is therefore trying to find ways to correct for errors without disturbing a device’s quantum states. Gillett is part of a team trying to understand how best to implement error-correcting algorithms on real quantum-computing chips.
Mehul Malik, who studied physics at a liberal arts college in New York, was attracted to quantum physics because of what he calls a “weird middle ground between artistic creative thought and the rigour of physics”. After doing a PhD at the University of Rochester, he spent five years as a postdoc with Anton Zeilinger at the University of Vienna in Austria before moving to Heriot-Watt University in the UK. As head of its Beyond Binary Quantum Information research group, Malik works on quantum information processing and communication and fundamental studies of entanglement.
Sarah Alam Malik is a particle physicist at University College London, using particle colliders to detect and study potential candidates for dark matter. She is also trying to use quantum computers to speed up the discovery of new physics given that what she calls “our most cherished and compelling theories” for physics beyond the Standard Model, such as supersymmetry, have not yet been seen. In particular, Malik is trying to find new physics in a way that’s “model agnostic” – in other words, using quantum computers to search particle-collision data for anomalous events that have not been seen before.
Muhammad Hamza Waseem studied electrical engineering in Pakistan, but got hooked on quantum physics after getting involved in recreating experiments to test Bell’s inequalities in what he claims was the first quantum optics lab in the country. Waseem then moved to the the University of Oxford in the UK, to do a PhD studying spin waves to make classical and quantum logic circuits. Unable to work when his lab shut during the COVID-19 pandemic, Waseem approached Quantinuum to see if he could help them in their quest to build quantum computers using ion traps. Now based at the company, he studies how quantum computers can do natural-language processing. “Think ChatGPT, but powered with quantum computers,” he says.
Nicole Gillett: If you look at roadmaps of quantum-computing companies, you’ll find that IBM, for example, intends to build the world’s first utility scale and fault-tolerant quantum computer by the end of the decade. Beyond 2033, they’re committing to have a system that could support 2000 “logical qubits”, which are essentially error-corrected qubits, in which the data of one qubit has been encoded into many qubits.
What can be achieved with that number of qubits is a difficult question to answer but some theorists, such as Juan Maldacena, have proposed some very exotic ideas, such as using a system of 7000 qubits to simulate black-hole dynamics. Now that might not be a particularly useful industry application, but it tells you about the potential power of a machine like this.
Mehul Malik: In my field, quantum networks that can distribute individual quantum particles or entangled states over large and short distances will have a significant impact within the next 10 years. Quantum networks will connect smaller, powerful quantum processors to make a larger quantum device, whether for computing or communication. The technology is quite mature – in fact, we’ve already got a quantum network connecting banks in London.
I will also add something slightly controversial. We often try to distinguish between quantum and non-quantum technologies, but what we’re heading towards is combining classical state-of-the-art devices with technology based on inherently quantum effects – what you might call “quantum adjacent technology”. Single-photon detectors, for example, are going to revolutionize healthcare, medical imaging and even long-distance communication.
Sarah Alam Malik: For me, the biggest impact of quantum technology will be applying quantum computing algorithms in physics. Can we quantum simulate the dynamics of, say, proton–proton collisions in a more efficient and accurate manner? Can we combine quantum computing with machine learning to sift through data and identify anomalous collisions that are beyond those expected from the Standard Model?
Quantum technology is letting us ask very fundamental questions about nature.
Sarah Alam Malik, University College London
Quantum technology, in other words, is letting us ask very fundamental questions about nature. Emerging in theoretical physics, for example, is the idea that the fundamental layer of reality may not be particles and fields, but units of quantum information. We’re looking at the world through this new quantum-theoretic lens and asking questions like, whether it’s possible to measure entanglement in top quarks and even explore Bell-type inequalities at particle colliders.
One interesting quantity is “magic”, which is a measure of how far you are from having something that can be classically simulable (Phys. Rev. D 110 116016). The more magic there is in a system the less easy it is to simulate classically – and therefore the greater the computational resource it possesses for quantum computing. We’re asking how much “magic” there is in, for instance, top quarks produced at the Large Hadron Collider. So one of the most important developments for me may well be asking questions in a very different way to before.
Muhammad Hamza Waseem: Technologically speaking, the biggest impact will be simulating quantum systems using a quantum computer. In fact, researchers from Google already claim to have simulated a wormhole in a quantum computer, albeit a very simple version that could have been tackled with a classical device (Nature 612 55).
But the most significant impact has to do with education. I believe quantum theory teaches us that reality is not about particles and individuals – but relations. I’m not saying that particles don’t exist but they emerge from the relations. In fact, with colleagues at the University of Oxford, we’ve used this idea to develop a new way of teaching quantum theory, called Quantum in Pictures.
We’ve already tried our diagrammatic approach with a group of 16–18-year-olds, teaching them the entire quantum-information course that’s normally given to postgraduates at Oxford. At the end of our two-month course, which had one lecture and tutorial per week, students took an exam with questions from past Oxford papers. An amazing 80% of students passed and half got distinctions.
For quantum theory to have a big impact, we have to make quantum physics more accessible to everyone.
Muhammad Hamza Waseem, Quantinuum
I’ve also tried the same approach on pupils in Pakistan: the youngest, who was just 13, can now explain quantum teleportation and quantum entanglement. My point is that for quantum theory to have a big impact, we have to make quantum physics more accessible to everyone.
Nicole Gillett: The challenge will be building up a big enough quantum workforce. Sometimes people hear the words “quantum computer” and get scared, worrying they’re going to have to solve Hamiltonians all the time. But is it possible to teach students at high-school level about these concepts? Can we get the ideas across in a way that is easy to understand so people are interested and excited about quantum computing?
At Riverlane, we’ve run week-long summer workshops for the last two years, where we try to teach undergraduate students enough about quantum error correction so they can do “decoding”. That’s when you take the results of error correction and try to figure out what errors occurred on your qubits. By combining lectures and hands-on tutorials we found we could teach students about error corrections – and get them really excited too.
Our biggest challenge will be not having a workforce ready for quantum computing.
Nicole Gillett, Riverlane
We had students from physics, philosophy, maths and computer science take the course – the only pre-requisite, apart from being curious about quantum computers, is some kind of coding ability. My point is that these kinds of boot camps are going to be so important to inspire future generations. We need to make the information accessible to people because otherwise our biggest challenge will be not having a workforce ready for quantum computing.
Mehul Malik: One of the big challenges is international cooperation and collaboration. Imagine if, in the early days of the Internet, the US military had decided they’d keep it to themselves for national-security reasons or if CERN hadn’t made the World Wide Web open source. We face the same challenge today because we live in a world that’s becoming polarized and protectionist – and we don’t want that to hamper international collaboration.
Over the last few decades, quantum science has developed in a very international way and we have come so far because of that. I have lived in four different continents, but when I try to recruit internationally, I face significant hurdles from the UK government, from visa fees and so on. To really progress in quantum tech, we need to collaborate and develop science in a way that’s best for humanity not just for each nation.
Sarah Alam Malik: One of the most important challenges will be managing the hype that inevitably surrounds the field right now. We’ve already seen this with artificial intelligence (AI), which has gone though the whole hype cycle. Lots of people were initially interested, then the funding dried up when reality didn’t match expectations. But now AI has come back with such resounding force that we’re almost unprepared for all the implications of it.
Quantum can learn from the AI hype cycle, finding ways to manage expectations of what could be a very transformative technology. In the near- and mid-term, we need to not overplay things and be cautious of this potentially transformative technology – yet be braced for the impact it could potentially have. It’s a case of balancing hype with reality.
Muhammad Hamza Waseem: Another important challenge is how to distribute funding between research on applications and research on foundations. A lot of the good technology we use today emerged from foundational ideas in ways that were not foreseen by the people originally working on them. So we must ensure that foundational research gets the funding it deserves or we’ll hit a dead end at some point.
Mehul Malik: AI is already changing how I do research, speeding up the way I discover knowledge. Using Google Gemini, for example, I now ask my browser questions instead of searching for specific things. But you still have to verify all the information you gather, for example, by checking the links it cites. I recently asked AI a complex physics question to which I knew the answer and the solution it gave was terrible. As for how quantum is changing research, I’m less sure, but better detectors through quantum-enabled research will certainly be good.
Muhammad Hamza Waseem: AI is already being deployed in foundational research, for example, to discover materials for more efficient batteries. A lot of these applications could be integrated with quantum computing in some way to speed work up. In other words, a better understanding of quantum tech will let us develop AI that is safer, more reliable, more interpretable – and if something goes wrong, you know how to fix it. It’s an exciting time to be a researcher, especially in physics.
Sarah Alam Malik: I’ve often wondered if AI, with the breadth of knowledge that it has across all different fields, already has answers to questions that we couldn’t answer – or haven’t been able to answer – just because of the boundaries between disciplines. I’m a physicist and so can’t easily solve problems in biology. But could AI help us to do breakthrough research at the interface between disciplines?
Nicole Gillett: As a software engineer, I once worked at an Internet security company called CloudFlare, which taught me that it’s never too early to be thinking about how any new technology – both AI and quantum – might be abused. What’s also really interesting is whether AI and machine learning can be used to build quantum computers by developing the coding algorithms they need. Companies like Google are active in this area and so are Riverlane too.
Mehul Malik: I recently discussed this question with a friend who works in AI, who said that the huge AI boom in industry, with all the money flowing in to it, has effectively killed academic research in the field. A lot of AI research is now industry-led and goal-orientated – and there’s a risk that the economic advantages of AI will kill curiosity-driven research. The remedy, according to my friend, is to pay academics in AI more as they are currently being offered much larger salaries to work in the private sector.
We need to diversify so that the power to control or chart the course of quantum technologies is not in the hands of a few privileged monopolies.
Mehul Malik, Heriot-Watt University
Another issue is that a lot of power is in the hands a just a few companies, such as Nvidia and ASML. The lesson for the quantum sector is that we need to diversify early on so that the power to control or chart the course of quantum technologies is not in the hands of a few privileged monopolies.
Sarah Alam Malik: Quantum technology has a lot to learn from AI, which has shown that we need to break down the barriers between disciplines. After all, some of the most interesting and impactful research in AI has happened because companies can hire whoever they need to work on a particular problem, whether it’s a computer scientist, a biologist, a chemist, a physicist or a mathematician.
Nature doesn’t differentiate between biology and physics. In academia we not only need people who are hyper specialized but also a crop of generalists who are knee-deep in one field but have experience in other areas too.
The lesson from the AI boom is to blur the artificial boundaries between disciplines and make them more porous. In fact, quantum is a fantastic playground for that because it is inherently interdisciplinary. You have to bring together people from different disciplines to deliver this kind of technology.
Muhammad Hamza Waseem: AI research is in a weird situation where there are lots of excellent applications but so little is understood about how AI machines work. We have no good scientific theory of intelligence or of consciousness. We need to make sure that quantum computing research does not become like that and that academic research scientists are well-funded and not distracted by all the hype that industry always creates.
At the start of the previous century, the mathematician David Hilbert said something like “physics is becoming too difficult for the physicists”. I think quantum computing is also somewhat becoming too challenging for the quantum physicists. We need everyone to get involved for the field to reach its true potential.
Today’s AI systems use vast amounts of energy, but should we also be concerned about the environmental impact of quantum computers? Google, for example, has already carried out quantum error-correction experiments in which data from the company’s quantum computers had to be processed once every microsecond per round of error correction (Nature 638 920). “Finding ways to process it to keep up with the rate at which it’s being generated is a very interesting area of research,” says Nicole Gillett.
However, quantum computers could cut our energy consumption by allowing calculations to be performed far more quickly and efficiently than is possible with classical machines. For Mehul Malik, another important step towards “green” quantum technology will be to lower the energy that quantum devices require and to build detectors that work at room temperature and are robust against noise. Quantum computers themselves can also help, he thinks, by discovering energy-efficient technologies, materials and batteries.
Will we ever see portable quantum computers or will they always be like today’s cloud-computing devices in distant data centres? Muhammad Hamza Waseem certainly does not envisage a word processor that uses a quantum computer. But he points to companies like SPINQ, which has built a two quantum bit computer for educational purposes. “In a sense, we already have a portable quantum computer,” he says. For Mehul Malik, though, it’s all about the market. “If there’s a need for it,” he joked, “then somebody will make it.”

When asked by Peter Knight – one of the driving forces behind the UK’s quantum-technology programme – what the panel would do if they were science minister, Nicole Gillett said she would seek to make the UK the leader in quantum computing by investing heavily in education. Mehul Malik would cut the costs of scientists moving across borders, pointing out that many big firms have been founded by immigrants. Sarah Alam Malik called for long-term funding – and not to give up if short-term gains don’t transpire. Muhammad Hamza Waseem, meanwhile, said we should invest more in education, research and the international mobility of scientists.
This article forms part of Physics World‘s contribution to the 2025 International Year of Quantum Science and Technology (IYQ), which aims to raise global awareness of quantum physics and its applications.
Stayed tuned to Physics World and our international partners throughout the year for more coverage of the IYQ.
Find out more on our quantum channel.
The post From building a workforce to boosting research and education – future quantum leaders have their say appeared first on Physics World.

China conducted a pair of launches in recent days, sending a commercial cargo spacecraft and tech demo into orbit, followed by a remote sensing satellite.
The post China launches experimental cargo spacecraft, opaque tech demo mission and remote sensing satellite appeared first on SpaceNews.

New analysis suggests that problems with NASA’s MAVEN Mars orbiter may be more serious than a simple communications glitch.
The post MAVEN telemetry shows changes to spacecraft orbit and rotation appeared first on SpaceNews.







Senior leaders emphasize internal expertise and hands-on experimentation
The post Space Force uses AI challenge to push everyday use of artificial intelligence appeared first on SpaceNews.
