↩ Accueil

Vue lecture

NASA’s Goddard Space Flight Center hit by significant downsizing

NASA’s Goddard Space Flight Center (GSFC) looks set to lose a big proportion of its budget as a two-decade reorganization plan for the centre is being accelerated. The move, which is set to be complete by March, has left the Goddard campus with empty buildings and disillusioned employees. Some staff even fear that the actions during the 43-day US government shutdown, which ended on 12 November, could see the end of much of the centre’s activities.

Based in Greenbelt, Maryland, the GSFC has almost 10 000 scientists and engineers, about 7000 of whom are directly employed by NASA contractors. Responsible for many of NASA’s most important uncrewed missions, telescopes, and probes, the centre is currently working on the Nancy Grace Roman Space Telescope, which is scheduled to launch in 2027, as well as the Dragonfly mission that is due to head for Saturn’s largest moon Titan in 2028.

The ability to meet those schedules has now been put in doubt by the Trump administration’s proposed budget for financial year 2026, which started in September. It calls for NASA to receive almost $19bn – far less than the $25bn it has received for the past two years. If passed, Goddard would lose more than 42% of its staff.

Congress, which passes the final budget, is not planning to cut NASA so deeply as it prepares its 2026 budget proposal. But on 24 September, Goddard managers began what they told employees was “a series of moves…that will reduce our footprint into fewer buildings”. The shift is intended to “bring down overall operating costs while maintaining the critical facilities we need for our core capabilities of the future”.

While this is part of a 20-year “master plan” for the GSFC that NASA’s leadership approved in 2019, the management’s memo stated that “all planned moves will take place over the next several months and be completed by March 2026″. A report in September by Democratic members of the Senate Committee on Commerce, Science, and Transportation, which is responsible for NASA, asserts that the cuts are “in clear violation of the [US] constitution [without] regard for the impacts on NASA’s science missions and workforce”.

On 3 November, the Goddard Engineers, Scientists and Technicians Association, a union representing NASA workers, reported that the GSFC had already closed over a third of its buildings, including some 100 labs. This had been done, it says, “with extreme haste and with no transparent strategy or benefit to NASA or the nation”. The union adds that the “closures are being justified as cost-saving but no details are being provided and any short-term savings are unlikely to offset a full account of moving costs and the reduced ability to complete NASA missions”.

Accounting for the damage

Zoe Lofgren, the lead Democrat on the House of Representatives Science Committee, has called on Sean Duffy, NASA’s acting administrator, that it “must now halt” any laboratory, facility and building closure and relocation activities at Goddard. In a  letter to Duffy dated 10 November, she also calls for the “relocation, disposal, excessing, or repurposing of any specialized equipment or mission-related activities, hardware and systems” to also end immediately.

Lofgren now wants NASA to carry out a “full accounting of the damage inflicted on Goddard thus far” by 18 November. Owing to the government shutdown, no GSFC or NASA official was available to respond to Physics World’s requests for a response.

Meanwhile, the Trump administration has renominated billionaire entrepreneur Jared Isaacman as NASA’s administrator. Trump had originally nominated Isaacman, who had flown on a private SpaceX mission and carried out spacewalk, on the recommendation of SpaceX founder Elon Musk. But the administration withdrew the nomination in May following concerns among some Republicans that Isaacman had funded the Democrat party.

The post NASA’s Goddard Space Flight Center hit by significant downsizing appeared first on Physics World.

  •  

Designing better semiconductor chips: NP hard problems and forever chemicals

Like any major endeavour, designing and fabricating semiconductor chips requires compromise. As well as trade-offs between cost and performance, designers also consider carbon emissions and other environmental impacts.

In this episode of the Physics World Weekly podcast, Margaret Harris reports from the Heidelberg Laureate Forum where she spoke to two researchers who are focused on some of these design challenges.

Up first is Mariam Elgamal, who’s doing a PhD at Harvard University on the development of environmentally sustainable computing systems. She explains why sustainability goes well beyond energy efficiency and must consider the manufacturing process and the chemicals used therein.

Harris also chats with Andrew Gunter, who is doing a PhD at the University of British Columbia on circuit design for computer chips. He talks about the maths-related problems that must be solved in order to translate a desired functionality into a chip that can be fabricated.

 

The post Designing better semiconductor chips: NP hard problems and forever chemicals appeared first on Physics World.

  •  

ESI Motion Launches “SatBat,” a Revolutionary Space-Rated Battery Set to Redefine Power Systems in Low Earth Orbit

ESI Motion logo

Simi Valley, CA — [November 13, 2025] — ESI Motion, a leader in advanced motion and power solutions, proudly announces the release of its next-generation space-rated satellite battery, SatBat, engineered […]

The post ESI Motion Launches “SatBat,” a Revolutionary Space-Rated Battery Set to Redefine Power Systems in Low Earth Orbit appeared first on SpaceNews.

  •  

Countering China’s Space Silk Road: a U.S. partnership model for the Middle East

United Arab Emirates astronaut Sultan AlNeyadi was the first Arab astronaut to serve on the International Space Station. Credit: NASA

The Middle East is no longer asking whether it should develop domestic space capabilities; it’s deciding with whom it will develop them. If the United States wants to be the country of choice ahead of China, it must create a joint space partnership agreement framework to align American and partner nations’ industry, government and financial […]

The post Countering China’s Space Silk Road: a U.S. partnership model for the Middle East appeared first on SpaceNews.

  •  

High-resolution PET scanner visualizes mouse brain structures with unprecedented detail

Positron emission tomography (PET) is used extensively within preclinical research, enabling molecular imaging of rodent brains, for example, to investigate neurodegenerative disease. Such imaging studies require the highest possible spatial resolution to resolve the tiny structures in the animal’s brain. A research team at the National Institutes for Quantum Science and Technology (QST) in Japan has now developed the first PET scanner to achieve sub-0.5 mm spatial resolution.

Submillimetre-resolution PET has been demonstrated by several research groups. Indeed, the QST team previously built a PET scanner with 0.55 mm resolution – sufficient to visualize the thalamus and hypothalamus in the mouse brain. But identification of smaller structures such as the amygdala and cerebellar nuclei has remained a challenge.

“Sub-0.5 mm resolution is important to visualize mouse brain structures with high quantification accuracy,” explains first author Han Gyu Kang. “Moreover, this research work will change our perspective about the fundamental limit of PET resolution, which had been regarded to be around 0.5 mm due to the positron range of [the radioisotope] fluorine-18”.

System optimization

With Monte Carlo simulations revealing that sub-0.5 mm resolution could be achievable with optimal detector parameters and system geometry, Kang and colleagues performed a series of modifications to their submillimetre-resolution PET (SR-PET) to create the new high-resolution PET (HR-PET) scanner.

The HR-PET, described in IEEE Transactions on Medical Imaging, is based around two 48 mm-diameter detector rings with an axial coverage of 23.4 mm. Each ring contains 16 depth-of-interaction (DOI) detectors (essential to minimize parallax error in a small ring diameter) made from three layers of LYSO crystal arrays stacked in a staggered configuration, with the outer layer coupled to a silicon photomultiplier (SiPM) array.

Compared with their previous design, the researchers reduced the detector ring diameter from 52.5 to 48 mm, which served to improve geometrical efficiency and minimize the noncollinearity effect. They also reduced the crystal pitch from 1.0 to 0.8 mm and the SiPM pitch from 3.2 to 2.4 mm, improving the spatial resolution and crystal decoding accuracy, respectively.

Other changes included optimizing the crystal thicknesses to 3, 3 and 5 mm for the first, second and third arrays, as well as use of a narrow energy window (440–560 keV) to reduce the scatter fraction and inter-crystal scattering events. “The optimized staggered three-layer crystal array design is also a key factor to enhance the spatial resolution by improving the spatial sampling accuracy and DOI resolution compared with the previous SR-PET,” Kang points out.

Performance tests showed that the HR-PET scanner had a system-level energy resolution of 18.6% and a coincidence timing resolution of 8.5 ns. Imaging a NEMA 22Na point source revealed a peak sensitivity at the axial centre of 0.65% for the 440–560 keV energy window and a radial resolution of 0.67±0.06 mm from the centre to 10 mm radial offset (using 2D filtered-back-projection reconstruction) – a 33% improvement over that achieved by the SR-PET.

To further evaluate the performance of the HR-PET, the researchers imaged a rod-based resolution phantom. Images reconstructed using a 3D ordered-subset-expectation-maximization (OSEM) algorithm clearly resolved all of the rods. This included the smallest rods with diameters of 0.5 and 0.45 mm, with average valley-to-peak ratios of 0.533 and 0.655, respectively – a 40% improvement over the SR-PET.

In vivo brain PET

The researchers then used the HR-PET for in vivo mouse brain imaging. They injected 18F-FITM, a tracer used to image the central nervous system, into an awake mouse and performed a 30 min PET scan (with the animal anesthetized) 42 min after injection. For comparison, they scanned the same mouse for 30 min with a preclinical Inveon PET scanner.

Mouse brain PET image
Imaging the mouse brain 3D maximum intensity projection image obtained from a 30-min HR-PET scan using 18F-FITM. High tracer uptake is seen in the cerebellum, thalamus and hypothalamus. Scale bar: 10 mm. (Courtesy: Han Gyu Kang)

After OSEM reconstruction, strong tracer uptake in the thalamus, hypothalamus, cerebellar cortex and cerebellar nuclei was clearly visible in the coronal HR-PET images. A zoomed image distinguished the cerebellar nuclei and flocculus, while sagittal and axial images visualized the cortex and striatum. Images from the Inveon, however, could barely resolve these brain structures.

The team also imaged the animal’s glucose metabolism using the tracer 18F-FDG. A 30 min HR-PET scan clearly delineated glucose transporter expression in the cortex, thalamus, hypothalamus and cerebellar nuclei. Here again, the Inveon could hardly identify these small structures.

The researchers note that the 18F-FITM and 18F-FDG PET images matched well with the anatomy seen in a preclinical CT scan. “To the best of our knowledge, this is the first separate identification of the hypothalamus, amygdala and cerebellar nuclei of mouse brain,” they write.

Future plans for the HR-PET scanner, says Kang, include using it for research on neurodegenerative disorders, with tracers that bind to amyloid beta or tau protein. “In addition, we plan to extend the axial coverage over 50 mm to explore the whole body of mice with sub-0.5 mm resolution, especially for oncological research,” he says. “Finally, we would like to achieve sub-0.3 mm PET resolution with more optimized PET detector and system designs.”

The post High-resolution PET scanner visualizes mouse brain structures with unprecedented detail appeared first on Physics World.

  •  

‘Uncontrolled experiment:’ Study links harmful atmospheric metals to spacecraft reentry

Space debris plunges to Earth, burning its way through the atmosphere. Credit: The Aerospace Corporation

GOLDEN, CO — The surge in megasatellite constellations is creating problems beyond amplifying the Earth-circling space debris, according to new research. Reentering spacecraft and rocket stages may also be damaging Earth’s atmosphere, as well as increasing the risk of space waste hitting the Earth. New research posted to the preprint database ArXiv finds that “space […]

The post ‘Uncontrolled experiment:’ Study links harmful atmospheric metals to spacecraft reentry appeared first on SpaceNews.

  •  

Ground truth: Why the lunar program needs its Earthbound network

As the world prepares to return to the moon, much of the attention remains fixed on the visible frontier: the rockets, landers and orbital stations that will make it possible. Yet the success of this new era in exploration depends on something far less visible — the communications infrastructure that keeps those missions alive once […]

The post Ground truth: Why the lunar program needs its Earthbound network appeared first on SpaceNews.

  •  

New experiments on static electricity cast doubt on previous studies in the field

Static electricity is an everyday phenomenon, but it remains poorly understood. Researchers at the Institute of Science and Technology Austria (ISTA) have now shed new light on it by capturing an “image” of charge distributions as charge transfers from one surface to another. Their conclusions challenge longstanding interpretations of previous experiments and enhance our understanding of how charge behaves on insulating surfaces.

Static electricity is also known as contact electrification because it occurs when charge is transferred from one object to another by touch. The most common laboratory example involves rubbing a balloon on someone’s head to make their hair stand on end. However, static electricity is also associated with many other activities, including coffee grinding, pollen transport and perhaps even the formation of rocky planets.

One of the most useful ways of studying contact electrification is to move a metal tip slowly over the surface of a sample without touching it, recording a voltage all the while. These so-called scanning Kelvin methods produce an “image” of voltages created by the transferred charge. At the macroscale, around 100 μm to 10 cm, the main method is termed scanning Kelvin probe microscopy (SKPM). At the nanoscale, around 10  nm to 100  μm, a related but distinct variant known as Kelvin probe force microscopy (KPFM) is used instead.

In previous fundamental physics studies using these techniques, the main challenges have been to make sense of the stationary patterns of charge left behind after contact electrification, and to investigate how these patterns evolve over space and time. In the latest work, the ISTA team chose to ask a slightly different question: when are the dynamics of charge transfer too fast for measured stationary patterns to yield meaningful information?

Mapping the charge on the contact-electrified surface of a polymer film

To find out, ISTA PhD student Felix Pertl built a special setup that could measure a sample’s surface charge with KPFM; transfer it below a linear actuator so that it could exchange charge when it contacted another material; and then transfer it underneath the KPFM again to image the resulting change in the surface charge.

“In a typical set-up, the sample transfer, moving the AFM to the right place and reinitiation and recalibration of the KPFM parameters can easily take as long as tens of minutes,” Pertl explains. “In our system, this happens in as little as around 30 s. As all aspects of the system are completely automated, we can repeat this process, and quickly, many times.”

An experimental setup to measure static electricity
Whole setup side view of the experiment: the counter-sample (white rod with green sample holder and PDMS at the very end) approaches the sample and induces electric charge via contact. The AFM head is on the left waiting until the sample returns to its original position. (Courtesy: Felix Pertl)

This speed-up is important because static electricity dissipates relatively rapidly. In fact, the researchers found that the transferred charge disappeared from the sample’s surface quicker than the time required for most KPFM scans. Their data also revealed that the deposited charge was, in effect, uniformly distributed across the surface and that its dissipation depended on the material’s electrical conductivity. Additional mathematical modelling and subsequent experiments confirmed that the more insulating a material is, the slower it dissipates charge.

Surface heterogeneity likely not a feature of static electricity

Pertl says that these results call into question the validity of some previous static electricity studies that used KPFM to study charge transfer. “The most influential paper in our field to date reported surface charge heterogeneity using KPFM,” he tells Physics World. At first, the ISTA team’s goal was to understand the origin of this heterogeneity. But when their own experiments showed an essentially homogenous distribution of surface charge, the researchers had to change tack.

“The biggest challenge in our work was realizing – and then accepting – that we could not reproduce the results from this previous study,” Pertl says. “Convincing both my principal investigator and myself that our data revealed a very different physical mechanism required patience, persistence and trust in our experimental approach.”

The discrepancy, he adds, implies that the surface heterogeneity previously observed was likely not a feature of static electricity, as was claimed. Instead, he says, it was probably “an artefact of the inability to image the charge before it had left the sample surface”.

A historical precedent

Studies of contact electrification studies go back a long way. Philippe Molinié of France’s GeePs Laboratory, who was not involved in this work, notes that the first experiments were performed by the English scientist William Gilbert clear back in the sixteenth century. As well as coining the term “electricity” (from the Greek “elektra”, meaning amber), Gilbert was also the first to establish that magnets maintain their electrical attraction over time, while the forces produced by contact-charged insulators slowly decrease.

“Four centuries later, many mysteries remain unsolved in the contact electrification phenomenon,” Molinié observes. He adds that the surfaces of insulating materials are highly complex and usually strongly disordered, which affects their ability to transfer charge at the molecular scale. “The dynamics of the charge neutralization, as Pertl and colleagues underline, is also part of the process and is much more complex than could be described by a simple resistance-capacitor model,” Molinié says.

Although the ISTA team studied these phenomena with sophisticated Kelvin probe microscopy rather than the rudimentary tools available to Gilbert, it is, Molinié says, “striking that the competition between charge transfer and charge screening that comes from the conductivity of an insulator, first observed by Gilbert, is still at the very heart of the scientific interrogations that this interesting new work addresses.”

“A more critical interpretation”

The Austrian researchers, who detail their work in Phys. Rev. Lett., say they hope their experiments will “encourage a more critical interpretation” of KPFM data in the future, with a new focus on the role of sample grounding and bulk conductivity in shaping observed charge patterns. “We hope it inspires KPFM users to reconsider how they design and analyse experiments, which could lead to more accurate insights into charge behaviour in insulators,” Pertl says.

“We are now planning to deliberately engineer surface charge heterogeneity into our samples,” he reveals. “By tuning specific surface properties, we aim to control the sign and spatial distribution of charge on defined regions of these.”

The post New experiments on static electricity cast doubt on previous studies in the field appeared first on Physics World.

  •