Exploring the icy moons of the solar system
Our blue planet is a Goldilocks world. We’re at just the right distance from the Sun that Earth – like Baby Bear’s porridge – is not too hot or too cold, allowing our planet to be bathed in oceans of liquid water. But further out in our solar system are icy moons that eschew the Goldilocks principle, maintaining oceans and possibly even life far from the Sun.
We call them icy moons because their surface, and part of their interior, is made of solid water-ice. There are over 400 icy moons in the solar system – most are teeny moonlets just a few kilometres across, but a handful are quite sizeable, from hundreds to thousands of kilometres in diameter. Of the big ones, the best known are Jupiter’s moons, Europa, Ganymede and Callisto, and Saturn’s Titan and Enceladus.
Yet these moons are more than just ice. Deep beneath their frozen shells – some –160 to –200 °C cold and bathed in radiation – lie oceans of water, kept liquid thanks to tidal heating as their interiors flex in the strong gravitational grip of their parent planets. With water being a prerequisite for life as we know it, these frigid systems are our best chance for finding life beyond Earth.
The first hints that these icy moons could harbour oceans of liquid water came when NASA’s Voyager 1 and 2 missions flew past Jupiter in 1979. On Europa they saw a broken and geologically youthful-looking surface, just millions of years old, featuring dark cracks that seemed to have slushy material welling up from below. Those hints turned into certainty when NASA’s Galileo mission visited Jupiter between 1995 and 2003. Gravity and magnetometer experiments proved that not only does Europa contain a liquid layer, but so do Ganymede and Callisto.
Meanwhile at Saturn, NASA’s Cassini spacecraft (which arrived in 2004) encountered disturbances in the ringed planet’s magnetic field. They turned out to be caused by plumes of water vapour erupting out of giant fractures splitting the surface of Enceladus, and it is believed that this vapour originates from an ocean beneath the moon’s ice shell. Evidence for an ocean on Titan is a little less certain, but gravity and radio measurements performed by Cassini and its European-built lander Huygens point towards the possibility of some liquid or slushy water beneath the surface.
Water, ice and JUICE
“All of these ocean worlds are going to be different, and we have to go to all of them to understand the whole spectrum of icy moons,” says Amanda Hendrix, director of the Planetary Science Institute in Arizona, US. “Understanding what their oceans are like can tell us about habitability in the solar system and where life can take hold and evolve.”
To that end, an armada of spacecraft will soon be on their way to the icy moons of the outer planets, building on the successes of their predecessors Voyager, Galileo and Cassini–Huygens. Leading the charge is NASA’s Europa Clipper, which is already heading to Jupiter. Clipper will reach its destination in 2030, with the Jupiter Icy moons Explorer (JUICE) from the European Space Agency (ESA) just a year behind it. Europa is the primary target of scientists because it is possibly Jupiter’s most interesting moon as a result of its “astrobiological potential”. That’s the view of Olivier Witasse, who is JUICE project scientist at ESA, and it’s why Europa Clipper will perform nearly 50 fly-bys of the icy moon, some as low as 25 km above the surface. JUICE will also visit Europa twice on its tour of the Jovian system.
The challenge at Europa is that it’s close enough to Jupiter to be deep inside the giant planet’s magnetosphere, which is loaded with high-energy charged particles that bathe the moon’s surface in radiation. That’s why Clipper and JUICE are limited to fly-bys; the radiation dose in orbit around Europa would be too great to linger. Clipper’s looping orbit will take it back out to safety each time. Meanwhile, JUICE will focus more on Callisto and Ganymede – which are both farther out from Jupiter than Europa is – and will eventually go into orbit around Ganymede.
“Ganymede is a super-interesting moon,” says Witasse. For one thing, at 5262 km across it is larger than Mercury, a planet. It also has its own intrinsic magnetic field – one of only three solid bodies in the solar system to do so (the others being Mercury and Earth).
Beneath the icy exterior
It’s the interiors of these moons that are of the most interest to JUICE and Clipper. That’s where the oceans are, hidden beneath many kilometres of ice. While the missions won’t be landing on the Jovian moons, these internal structures aren’t as inaccessible as we might at first think. In fact, there are three independent methods for probing them.

If a moon’s ocean contains salts or other electrically conductive contaminants, interesting things happen when passing through the parent planet’s variable magnetic field. “The liquid is a conductive layer within a varying magnetic field and that induces a magnetic field in the ocean that we can measure with a magnetometer using Faraday’s law,” says Witasse. The amount of salty contaminants, plus the depth of the ocean, influence the magnetometer readings.
Then there’s radio science – the way that an icy moon’s mass bends a radio signal from a spacecraft to Earth. By making multiple fly-bys with different trajectories during different points in a moon’s orbit around its planet, the moon’s gravity field can be measured. Once that is known to exacting detail, it can be applied to models of that moon’s internal structure.
Perhaps the most remarkable method, however, is using a laser altimeter to search for a tidal bulge in the surface of a moon. This is exactly what JUICE will be doing when in orbit around Ganymede. Its laser altimeter will map the shape of the surface – such as hills and crevasses – but gravitational tidal forces from Jupiter are expected to cause a bulge on the surface, deforming it by 1–10 m. How large the bulge is depends upon how deep the ocean is.
“If the surface ice is sitting above a liquid layer then the tide will be much bigger because if you sit on liquid, you are not attached to the rest of the moon,” says Witasse. “Whereas if Ganymede were solid the tide would be quite small because it is difficult to move one big, solid body.”
As for what’s below the oceans, those same gravity and radio-science experiments during previous missions have given us a general idea about the inner structures of Jupiter’s Europa, Ganymede and Callisto. All three have a rocky core. Inside Europa, the ocean surrounds the core, with a ceiling of ice above it. The rock–ocean interface potentially provides a source of chemical energy and nutrients for the ocean and any life there.
Ganymede’s interior structure is more complex. Separating the 3400 km-wide rocky core and the ocean is a layer, or perhaps several layers, of high-pressure ice, and there is another ice layer above the ocean. Without that rock–ocean interface, Ganymede is less interesting from an astrobiological perspective.
Meanwhile, Callisto, being the farthest from Jupiter, receives the least tidal heating of the three. This is reflected in Callisto’s lack of evolution, with its interior having not differentiated into layers as distinct as Europa and Ganymede. “Callisto looks very old,” says Witasse. “We’re seeing it more or less as it was at the beginning of the solar system.”
Crazy cryovolcanism
Tidal forces don’t just keep the interiors of the icy moons warm. They can also drive dramatic activity, such as cryovolcanoes – icy eruptions that spew out gases and volatile materials like liquid water (which quickly freezes in space), ammonia and hydrocarbons. The most obvious example of this is found on Saturn’s Enceladus, where giant water plumes squirt out through “tiger stripe” cracks at the moon’s south pole.
But there’s also growing evidence of cryovolcanism on Europa. In 2012 the Hubble Space Telescope caught sight of what looked like a water plume jetting out 200 km from the moon. But the discovery is controversial despite more data from Hubble and even supporting evidence found in archive data from the Galileo mission. What’s missing is cast-iron proof for Europa’s plumes. That’s where Clipper comes in.

“We need to find out if the plumes are real,” says Hendrix. “What we do know is if there is plume activity happening on Europa then it’s not as consistent or ongoing as is clearly happening at Enceladus.”
At Enceladus, the plumes are driven by tidal forces from Saturn, which squeeze and flex the 500 km-wide moon’s innards, forcing out water from an underground ocean through the tiger stripes. If there are plumes at Europa then they would be produced the same way, and would provide access to material from an ocean that’s dozens of kilometres below the icy crust. “I think we have a lot of evidence that something is happening at Europa,” says Hendrix.
These plumes could therefore be the key to characterizing the hidden oceans. One instrument on Clipper that will play an important role in investigating the plumes at Europa is an ultraviolet spectrometer, a technique that was very useful on the Cassini mission.
Because Enceladus’ plumes were not known until Cassini discovered them, the spacecraft’s instruments had not been designed to study them. However, scientists were able to use the mission’s ultraviolet imaging spectrometer to analyse the vapour when it was between Cassini and the Sun. The resulting absorption lines in the spectrum showed the plumes to be mostly pure water, ejected into space at a rate of 200 kg per second.

The erupted vapour freezes as it reaches space and some of it snows back down onto the surface. Cassini’s ultraviolet spectrometer was again used, this time to detect solar ultraviolet light reflected and scattered off these icy particles in the uppermost layers of Enceladus’ surface. Scientists found that any freshly deposited snow from the plumes has a different chemistry from older surface material that has been weathered and chemically altered by micrometeoroids and radiation, and therefore a different ultraviolet spectrum.
Icy moon landing
Another two instruments that Cassini’s scientists adapted to study the plumes were the cosmic dust analyser, and the ion and neutral mass spectrometer. When Cassini flew through the fresh plumes and Saturn’s E-ring, which is formed from older plume ejections, it could “taste” the material by sampling it directly. Recent findings from this data indicate that the plumes are rich in salt as well as organic molecules, including aliphatic and cyclic esters and ethers (carbon-bonded acid-based compounds such as fatty acids) (Nature Astron. 9 1662). Scientists also found nitrogen- and oxygen-bearing compounds that play a role in basic biochemistry and which could therefore potentially be building blocks of prebiotic molecules or even life in Enceladus’ ocean.

While Cassini could only observe Enceladus’ plumes and fresh snow from orbit, astronomers are planning a lander that could let them directly inspect the surface snow. Currently in the technology development phase, it would be launched by ESA sometime in the 2040s to arrive at the moon in 2054, when winter at Enceladus’ southern, tiger stripe-adorned pole turns to spring and daylight returns.
“What makes the mission so exciting to me is that although it looks like every large icy moon has an ocean, Enceladus is one where there is a very high chance of actually sampling ocean water,” says Jörn Helbert, head of the solar system section at ESA, and the science lead on the prospective mission.
The planned spacecraft will fly through the plumes with more sophisticated instruments than Cassini’s, designed specifically to sample the vapour (like Clipper will do at Europa). Yet adding a lander could get us even closer to the plume material. By landing close to the edge of a tiger stripe, a lander would dramatically increase the mission’s ability to analyse the material from the ocean in the form of fresh snow. In particular, it would look for biosignatures – evidence of the ocean being habitable, or perhaps even inhabited by microbes.
However, new research urges caution in drawing hasty conclusions about organic molecules present in the plumes and snow. While not as powerful as Jupiter’s, Saturn also has a magnetosphere filled with high-energy ions that bombard Enceladus. A recent laboratory study, led by Grace Richards of the Istituto Nazionale di Astrofisica e Planetologia Spaziale (IAPS-INAF) in Rome, found that when these ions hit surface-ice they trigger chemical reactions that produce organic molecules, including some that are precursors to amino acids, similar to what Cassini tasted in the plumes.
So how can we be sure that the organics in Enceladus’ plumes originate from the ocean, and not from radiation-driven chemistry on the surface? It is the same quandary for dark patches around cracks on the surface of Europa, which seem to be rich with organic molecules that could either originate via upwelling from the ocean below, or just from radiation triggering organic chemistry. A lander on Enceladus might solve not just the mystery of that particular moon, but provide important pointers to explain what we’re seeing on Europa too.
More icy companions
Enceladus is not Saturn’s only icy moon; there’s Titan too. As the ringed planet’s largest moon at 5150 km across, Titan (like Ganymede) is larger than Mercury. However, unlike the other moons in the solar system, Titan has a thick atmosphere rich in nitrogen and methane. The atmosphere is opaque, hiding the surface from spacecraft in orbit except at infrared wavelengths and radar, which means that getting below the smoggy atmosphere is a must.
ESA did this in 2005 with the Huygens lander, which, as it parachuted down to Titan’s frozen surface, revealed it to be a land of hills and dune plains with river channels, lakes and seas of flowing liquid hydrocarbons. These organic molecules originate from the methane in its atmosphere reacting with solar ultraviolet.
Until recently, it was thought that Titan has a core of rock, surrounded by a shell of high-pressure ice, above which sits a layer of salty liquid water and then an outer crust of water ice. However, new evidence from re-analysing Cassini’s data suggests that rather than oceans of liquid water, Titan has “slush” below the frozen exterior, with pockets of liquid water (Nature 648 556). The team, led by Flavio Petricca from NASA’s Jet Propulsion Laboratory, looked at how Titan’s shape morphs as it orbits Saturn. There is a several-hour lag between the moon passing the peak of Saturn’s gravitational pull and its shape shifting, implying that while there must be some form of non-solid substance below Titan’s surface to allow for deformation, more energy is lost or dissipated than would be if it was liquid water. Instead, the researchers found that a layer of high-pressure ice close to its melting point – or slush – better fits the data.

To find out more about Titan, NASA is planning to follow in Huygens’ footsteps with the Dragonfly mission but in an excitingly different way. Set to launch in 2028, Dragonfly should arrive at Titan in 2034 where it will deploy a rotorcraft that will fly over the moon’s surface, beneath the smog, occasionally touching down to take readings. Scientists are intending to use Dragonfly to sample surface material with a mass spectrometer to identify organic compounds and therefore better assess Titan’s biological potential. It will also perform atmospheric and geological measurements, even listening for seismic tremors while landed, which could provide further clues about Titan’s interior.
Jupiter and Saturn are also not the only planets to possess icy moons. We find them around Uranus and Neptune too. Even the dwarf planet Pluto and its largest moon Charon have strong similarities to icy moons. Whether any of these bodies, so far out from the Sun, can maintain an ocean is unclear, however.
Recent findings point to an ocean deep inside Uranus’ moon Ariel that may once have been 170 km deep, kept warm by tidal heating (Icarus 444 116822). But over time Ariel’s orbit around Uranus has become increasingly circular, weakening the tidal forces acting on it, and the ocean has partly frozen. Another of Uranus’ moons, Miranda, has a chaotic surface that appears to have melted and refrozen, and the pattern of cracks on its surface strongly suggests that the moon also contains an ocean, or at least did 150 million years ago. A new mission to Uranus is a top priority in the US’s most recent Decadal Review.
It’s becoming clear that icy ocean moons could far outnumber more traditional habitable planets like Earth, not just in our solar system, but across the galaxy (although none have been confirmed yet). Understanding the internal structures of the icy moons in our solar system, and characterizing their oceans, is vital if we are to expand the search for life beyond Earth.
The post Exploring the icy moons of the solar system appeared first on Physics World.













