↩ Accueil

Vue lecture

The next generation of radar needed to detect micro-debris and enable a safer LEO 

Computer-generated image of objects in Earth orbit that are currently being tracked. Credit: NASA

As someone deeply involved in the space sector, I’ve seen firsthand how low Earth orbit (LEO) is becoming increasingly congested. Satellite operators, space agencies and aerospace companies are all facing a growing threat from orbital debris. With more than 10,000 active satellites already in orbit and millions of smaller fragments accumulating, the risk of collision […]

The post The next generation of radar needed to detect micro-debris and enable a safer LEO  appeared first on SpaceNews.

  •  

Scientists realize superconductivity in traditional semiconducting material

Superconducting germanium:gallium trilayer
Coherent crystalline interfaces Atomic-resolution image of a superconducting germanium:gallium (Ge:Ga) trilayer with alternating Ge:Ga and silicon layers demonstrating precise control of atomic interfaces. (Courtesy: Salva Salmani-Rezaie)

The ability to induce superconductivity in materials that are inherently semiconducting has been a longstanding research goal. Improving the conductivity of semiconductor materials could help develop quantum technologies with a high speed and energy efficiency, including superconducting quantum bits (qubits) and cryogenic CMOS control circuitry. However, this task has proved challenging in traditional semiconductors – such as silicon or germanium – as it is difficult to maintain the optimal superconductive atomic structure.

In a new study, published in Nature Nanotechnology, researchers have used molecular beam epitaxy (MBE) to grow gallium-hyperdoped germanium films that retain their superconductivity. When asked about the motivation for this latest work, Peter Jacobson from the University of Queensland tells Physics World about his collaboration with Javad Shabani from New York University.

“I had been working on superconducting circuits when I met Javad and discovered the new materials their team was making,” he explains. “We are all trying to understand how to control materials and tune interfaces in ways that could improve quantum devices.”

Germanium: from semiconductor to superconductor

Germanium is a group IV element, so its properties bridge those of both metals and insulators. Superconductivity can be induced in germanium by manipulating its atomic structure to introduce more electrons into the atomic lattice. These extra electrons interact with the germanium lattice to create electron pairs that move without resistance, or in other words, they become superconducting.

Hyperdoping germanium (at concentrations well above the solid solubility limit) with gallium induces a superconducting state. However, this material is traditionally unstable due to the presence of structural defects, dopant clustering and poor thickness control. There have also been many questions raised as to whether these materials are intrinsically superconducting, or whether it is actually gallium clusters and unintended phases that are solely responsible for the superconductivity of gallium-doped germanium.

Considering these issues and looking for a potential new approach, Jacobson notes that X-ray absorption measurements at the Australian Synchrotron were “the first real sign” that Shabani’s team had grown something special. “The gallium signal was exceptionally clean, and early modelling showed that the data lined up almost perfectly with a purely substitutional picture,” he explains. “That was a genuine surprise. Once we confirmed and extended those results, it became clear that we could probe the mechanism of superconductivity in these films without the usual complications from disorder or spurious phases.”

Epitaxial growth improves superconductivity control

In a new approach, Jacobson, Shabani and colleagues used MBE to grow the crystals instead of relying on ion implantation techniques, allowing the germanium to by hyperdoped with gallium. Using MBE forces the gallium atoms to replace germanium atoms within the crystal lattice at levels much higher than previously seen. The process also provided better control over parasitic heating during film growth, allowing the researchers to achieve the structural precision required to understand and control the superconductivity of these germanium:gallium (Ge:Ga) materials, which were found to become superconducting at 3.5 K with a carrier concentration of 4.15 × 1021 holes/cm3. The critical gallium dopant threshold to achieve this was 17.9%.

Using synchrotron-based X-ray absorption, the team found that the gallium dopants were substitutionally incorporated into the germanium lattice and induced a tetragonal distortion to the unit cell. Density functional theory calculations showed that this causes a shift in the Fermi level into the valence band and flattens electronic bands. This suggests that the structural order of gallium in the germanium lattice creates a narrow band that facilitates superconductivity in germanium, and that this superconductivity arises intrinsically in the germanium, rather than being governed by defects and gallium clusters.

The researchers tested trilayer heterostructures – Ge:Ga/Si/Ge:Ga and Ge:Ga/Ge/Ge:Ga – as proof-of-principle designs for vertical Josephson junction device architectures. In the future, they hope to develop these into fully fledged Josephson junction devices.

Commenting on the team’s future plans for this research, Jacobson concludes: “I’m very keen to examine this material with low-temperature scanning tunnelling microscopy (STM) to directly measure the superconducting gap, because STM adds atomic-scale insights that complement our other measurements and will help clarify what sets hyperdoped germanium apart”.

The post Scientists realize superconductivity in traditional semiconducting material appeared first on Physics World.

  •  

Avoiding a harmful lunar ‘gold rush’

Artwork depicting lunar mining operations for Helium-3 involving harvesters, a solar power plant, rovers and return launchers. Credit: Interlune

As shown by the recent SpaceNews editorials by Mustafa Bilal and Stirling Forbes, there is currently much talk of a coming lunar “gold rush,” with nations and companies seemingly in a mad scramble to access the moon for its alleged resources. But how realistic is this vision, and could the pursuit of it do more harm […]

The post Avoiding a harmful lunar ‘gold rush’ appeared first on SpaceNews.

  •  

Better coffee, easier parking and more: the fascinating physics of daily life

It is book week here at Physics World and over the course of three days we are presenting conversations with the authors of three fascinating and fun books about physics. First up is my Physics World colleague Michael Banks, whose book Physics Around the Clock: Adventures in the Science of Everyday Living starts with your morning coffee and ends with a formula for making your evening television viewing more satisfying.

As well as the rich physics of coffee, we chat about strategies for finding the best parking spot and the efficient boarding of aeroplanes. If you have ever wondered why a runner’s ponytail swings from side-to-side when they reach a certain speed – we have the answer for you.

Other daily mysteries that we explore include how a hard steel razor blade can be dulled by cutting relatively soft hairs and why quasiparticles called “jamitons” are helping physicists understand the spontaneous appearance of traffic jams. And a warning for squeamish listeners, we do talk about the amazing virus-spreading capabilities of a flushing toilet.

APS logo

 

This episode is supported by the APS Global Physics Summit, which takes place on 15–20 March, 2026, in Denver, Colorado, and online.

The post Better coffee, easier parking and more: the fascinating physics of daily life appeared first on Physics World.

  •  

Novaspace Expands to India — Accelerating the Growth of the Nation’s Space Economy

Novaspace logo

Bangalore, November 18, 2025 — Novaspace, the global consulting and market-intelligence firm dedicated to the space sector, announces the opening of its new office in India, marking a strategic milestone […]

The post Novaspace Expands to India — Accelerating the Growth of the Nation’s Space Economy appeared first on SpaceNews.

  •  

Cosmic dawn: the search for the primordial hydrogen signal

“This is one of the big remaining frontiers in astronomy,” says Phil Bull, a cosmologist at the Jodrell Bank Centre for Astrophysics at the University of Manchester. “It’s quite a pivotal era of cosmic history that, it turns out, we don’t actually understand.”

Bull is referring to the vital but baffling period in the early universe – from 380,000 years to one billion years after the Big Bang – when its structure went from simple to complex. To lift the veil on this epoch, experiments around the world – from Australia to the Arctic – are racing to find a specific but elusive signal from the earliest hydrogen atoms. This signal could confirm or disprove scientists’ theories of how the universe evolved and the physics that governs it.

Hydrogen is the most abundant element in the universe. As neutral hydrogen atoms change states, they can emit or absorb photons. This spectral transition, which can be stimulated by radiation, produces an emission or absorption radio wave signal with a wavelength of 21 cm. To find out what happened during that early universe, astronomers are searching for these 21 cm photons that were emitted by primordial hydrogen atoms.

But despite more teams joining the hunt every year, no-one has yet had a confirmed detection of this radiation. So who will win the race to find this signal and how is the hunt being carried out?

A blank spot

Let’s first return to about 380,000 years after the Big Bang, when the universe had expanded and cooled to below 3000 K. At this stage, neutral atoms, including atomic hydrogen, could form. Thanks to the absence of free electrons, ordinary matter particles could decouple from light, allowing it to travel freely across the universe. This ancient radiation that permeates the sky is known as the cosmic microwave background (CMB).

But after that we don’t know much about what happened for the next few hundred million years. Meanwhile, the oldest known galaxy MoM-z14 – which existed about 280 million years after the Big Bang – was observed in April 2025 by the James Webb Space Telescope. So there is currently a gap of just under 280 million years in our observations of the early universe. “It’s one of the last blank spots,” says Anastasia Fialkov, an astrophysicist at the Institute of Astronomy of the University of Cambridge.

This “blank spot” is a bridge between the early, simple universe and today’s complex structured cosmos. During this early epoch, the universe went from being filled with a thick cloud of neutral hydrogen, to being diversely populated with stars, black holes and everything in between. It covers the end of the cosmic dark ages, the cosmic dawn, and the epoch of reionization – and is arguably one of the most exciting periods in our universe’s evolution.

During the cosmic dark ages, after the CMB flooded the universe, the only “ordinary” matter (made up of protons, neutrons and electrons) was neutral hydrogen (75% by mass) and neutral helium (25%), and there were no stellar structures to provide light. It is thought that gravity then magnified any slight fluctuations in density, causing some of this primordial gas to clump and eventually form the first stars and galaxies – a time called the cosmic dawn. Next came the epoch of reionization, when ultraviolet and X-ray emissions from those first celestial objects heated and ionized the hydrogen atoms, turning the neutral gas into a charged plasma of electrons and protons.

Stellar imprint

The 21 cm signal astronomers are searching for was produced when the spectral transition was excited by collisions in the hydrogen gas during the dark ages and then by the first photons from the first stars during the cosmic dawn. However, the intensity of the 21 cm signal can only be measured against the CMB, which acts as a steady background source of 21 cm photons.

When the hydrogen was colder than the background radiation, there were few collisions, and the atoms would have absorbed slightly more 21 cm photons from the CMB than they emitted themselves. The 21 cm signal would appear as a deficit, or absorption signal, against the CMB. But when the neutral gas was hotter than the CMB, the atoms would emit more photons than they absorbed, causing the 21 cm signal to be seen as a brighter emission against the CMB. These absorption and emission rates depend on the density and temperature of the gas, and the timing and intensity of radiation from the first cosmic sources. Essentially, the 21 cm signal became imprinted with how those early sources transformed the young universe.

One way scientists are trying to observe this imprint is to measure the average – or “global” – signal across the sky, looking at how it shifts from absorption to emission compared to the CMB. Normally, a 21 cm radio wave signal has a frequency of about 1420 MHz. But this ancient signal, according to theory, has been emitted and absorbed at different intensities throughout this cosmic “blank spot”, depending on the universe’s evolutionary processes at the time. The expanding universe has also stretched and distorted the signal as it travelled to Earth. Theories predict that it would now be in the 1 to 200 MHz frequency range – with lower frequencies corresponding to older eras – and would have a wavelength of metres rather than centimetres.

Importantly, the shape of the global 21 cm signal over time could confirm the lambda-cold dark matter (ΛCDM) model, which is the most widely accepted theory of the cosmos; or it could upend it. Many astronomers have dedicated their careers to finding this radiation, but it is challenging for a number of reasons.

Unfortunately, the signal is incredibly faint. Its brightness temperature, which is measured as the change in the CMB’s black body temperature (2.7 K), will only be in the region of 0.1 K.

1 The 21 cm signal across cosmic time

The 21 cm signal across cosmic time
(a CC BY 4.0 The Royal Society/A Fialkov et al. 2024 Philos. Trans. A Math. Phys. Eng. Sci. 382 20230068; b Copyright Springer Nature. Reused with permission from E de Lera Acedo et al. 2022 Nature Astronomy 6 984)

A simulation of the sky-averaged (global) signal as a function of time (horizontal) and space (vertical). b A typical model of the global 21 cm line with the main cosmic events highlighted. Each experiment searching for the global 21 cm signal focuses on a particular frequency band. For example, the Radio Experiment for the Analysis of Cosmic Hydrogen (REACH) is looking at the 50–170 MHz range (blue).

There is also no single source of this emission, so, like the CMB, it permeates the universe. “If it was the only signal in the sky, we would have found it by now,” says Eloy de Lera Acedo, head of Cavendish Radio Astronomy and Cosmology at the University of Cambridge. But the universe is full of contamination, with the Milky Way being a major culprit. Scientists are searching for 0.1 K in an environment “that’s a million times brighter”, he explains.

And even before this signal reaches the radio-noisy Earth, it has to travel through the atmosphere, which further distorts and contaminates it. “It’s a very difficult measurement,” says Rigel Cappallo, a research scientist at the MIT Haystack Observatory. “It takes a really, really well calibrated instrument that you understand really well, plus really good modelling.”

Seen but not confirmed

In 2018 the Experiment to Detect the Global EoR Signature (EDGES) – a collaboration between Arizona State University and MIT Haystack Observatory – hit the headlines when it claimed to have detected the global 21 cm signal (Nature 555 67).

The EDGES instrument is a dipole antenna, which resembles a ping-pong table with a gap in the middle (see photo at top of article for the 2024 set-up). It is mounted on a large metal groundsheet, which is about 30 × 30 m. Its ground-breaking observation was made at a remote site in western Australia, far from radio frequency interference.

But in the intervening seven years, no-one else has been able to replicate the EDGES results.

The spectrum dip that EDGES detected was very different from what theorists had expected. “There is a whole family of models that are predicted by the different cosmological scenarios,” explains Ravi Subrahmanyan, a research scientist at Australia’s national science agency CSIRO. “When we take measurements, we compare them with the models, so that we can rule those models in or out.”

In general, the current models predict a very specific envelope of signal possibilities (see figure 1). First, they anticipate an absorption dip in brightness temperature of around 0.1 to 0.2 K, caused by the temperature difference between the cold hydrogen gas (in an expanding universe) and the warmer CMB. Then, a speedy rise and photon emission is predicted as the gas starts to warm when the first stars form, and the signal should spike dramatically when the first X-ray binary stars fire up and heat up the surrounding gas. The signal is then expected to fade as the epoch of reionization begins, because ionized particles cannot undergo the spectral transition. With models, scientists theorize when this happened, how many stars there were, and how the cosmos unfurled.

2 Weird signal

The 21 cm signals predicted by standard cosmology (coloured lines
(Courtesy: SARAS Team)

The 21 cm signals predicted by current cosmology models (coloured lines) and the detection by the EDGES experiment (dashed black line).

“It’s just one line, but it packs in so many physical phenomena,” says Fialkov, referring to the shape of the 21 cm signal’s brightness temperature over time. The timing of the dip, its gradient and magnitude all represent different milestones in cosmic history, which affect how it evolved.

The EDGES team, however, reported a dip of more than double the predicted size, at about 78 MHz (see figure 2). While the frequency was consistent with predictions, the very wide and deep dip of the signal took the community by surprise.

“It would be a revolution in physics, because that signal will call for very, very exotic physics to explain it,” says de Lera Acedo. “Of course, the first thing we need to do is to make sure that that is actually the signal.”

A spanner in the works

The EDGES claim has galvanized the cosmology community. “It set a cat among the pigeons,” says Bull. “People realized that, actually, there’s some very exciting science to be done here.” Some groups are trying to replicate the EDGES observation, while others are trying new approaches to detect the signal that the models promise.

The Radio Experiment for the Analysis of Cosmic Hydrogen (REACH) – a collaboration between the University of Cambridge and Stellenbosch University in South Africa – focuses on the 50–170 MHz frequency range. Sitting on the dry and empty plains of South Africa’s Northern Cape, it is targeting the EDGES observation (Nature Astronomy 6 984).

A large metal mesh topped with two antennas, in a desert
The race to replicate REACH went online in the Karoo region of South Africa in December 2023. (Courtesy: Saurabh Pegwal, REACH collaboration)

In this radio-quiet environment, REACH has set up two antennas: one looks like EDGES’ dipole ping-pong table, while the other is a spiral cone. They sit on top of a giant metallic mesh – the ground plate – in the shape of a many-pointed star, which aims to minimize reflections from the ground.

Hunting for this signal “requires precision cosmology and engineering”, says de Lera Acedo, the principal investigator on REACH. Reflections from the ground or mesh, calibration errors, and signals from the soil, are the kryptonite of cosmic dawn measurements. “You need to reduce your systemic noise, do better analysis, better calibration, better cleaning [to remove other sources from observations],” he says.

Desert, water, snow

Another radio telescope, dubbed the Shaped Antenna measurement of the background Radio Spectrum (SARAS) – which was established in the late 2000s by the Raman Research Institute (RRI) in Bengaluru, India – has undergone a number of transformations to reduce noise and limit other sources of radiation. Over time, it has morphed from a dipole on the ground to a metallic cone floating on a raft. It is looking at 40 to 200 MHz (Exp. Astron. 51 193).

After the EDGES claim, SARAS pivoted its attention to verifying the detection, explains Saurabh Singh, a research scientist at the RRI. “Initially, we were not able to get down to the required sensitivity to be able to say anything about their detection,” he explains. “That’s why we started floating our radiometer on water.” Buoying the experiment reduces ground contamination and creates a more predictable surface to include in calculations.

Four photos of the SARAS telescope with different designs and in different locations
Floating telescope Evolution of the SARAS experiment and sites up to 2020. The third edition of the telescope, SARAS 3, was deployed on lakes to further reduce radio interference. (Courtesy: SARAS Team)

Using data from their floating radiometer, in 2022 Singh and colleagues disfavoured EDGES’ claim (Nature Astronomy 6 607), but for many groups the detection still remains a target for observations.

While SARAS has yet to detect a cosmic-dawn signal of its own, Singh says that non-detection is also an important element of finding the global 21 cm signal. “Non-detection gives us an opportunity to rule out a lot of these models, and that has helped us to reject a lot of properties of these stars and galaxies,” he says.

Raul Monsalve Jara – a cosmologist at the University of California, Berkeley – has been part of the EDGES collaboration since 2012, but decided to also explore other ways to detect the signal. “My view is that we need several experiments doing different things and taking different approaches,” he says.

The Mapper of the IGM Spin Temperature (MIST) experiment, of which Monsalve is co-principal investigator, is a collaboration between Chilean, Canadian, Australian and American researchers. These instruments are looking at 25 to 105 MHz (MNRAS 530 4125). “Our approach was to simplify the instrument, get rid of the metal ground plate, and to take small, portable instruments to remote locations,” he explains. These locations have to fulfil very specific requirements – everything around the instrument, from mountains to the soil, can impact the instrument’s performance. “If the soil itself is irregular, that will be very difficult to characterize and its impact will be difficult to remove [from observations],” Monsalve says.

Two photos of a small portable radio telescope – in a snowy Arctic region and in a hot desert
Physics on the move MIST conducts measurements of the sky-averaged radio spectrum at frequencies below 200 MHz. Its monopole and dipole variants are highly portable and have been deployed in some of the most remote sites on Earth, including the Arctic (top) and the Nevada desert (bottom). (Courtesy: Raul Monsalve)

So far, the MIST instrument, which is also a dipole ping-pong table, has visited a desert in California, another in Nevada, and even the Arctic. Each time, the researchers spend a few weeks at the site collecting data, and it is portable and easy to set up, Monsalve explains. The team is planning more observations in Chile. “If you suspect that your environment could be doing something to your measurements, then you need to be able to move around,” continues Monsalve. “And we are contributing to the field by doing that.”

Aaron Parsons, also from the University of California, Berkeley, decided that the best way to detect this elusive signal would be to try and eliminate the ground entirely – by suspending a rotating antenna over a giant canyon with 100 m empty space in every direction.

His Electromagnetically Isolated Global Signal Estimation Platform (EIGSEP) includes an antenna hanging four storeys above the ground, attached to Kevlar cable strung across a canyon in Utah. It’s observing at 50 to 250 MHz. “It continuously rotates around and twists every which way,” Parsons explains. Hopefully, that will allow them to calibrate the instrument very accurately. Two antennas on the ground cross-correlate observations. EIGSEP began making observations last year.

More experiments are expected to come online in the next year. The Remote HI eNvironment Observer (RHINO), an initiative of the University of Manchester, will have a horn-shaped receiver made of a metal mesh that is usually used to construct skyscrapers. Horn shapes are particularly good for calibration, allowing for very precise measurements. The most famous horn-shaped antenna is Bell Laboratories’ Holmdel Horn Antenna in the US, with which two scientists accidentally discovered the CMB in 1965.

Initially, RHINO will be based at Jodrell Bank Observatory in the UK, but like other experiments, it could travel to other remote locations to hunt for the 21 cm signal.

Similarly, Subrahmanyan – who established the SARAS experiment in India and is now with CSIRO in Australia – is working to design a new radiometer from scratch. The instrument, which will focus on 40–160 MHz, is called Global Imprints from Nascent Atoms to Now (GINAN). He says that it will feature a recently patented self-calibrating antenna. “It gives a much more authentic measurement of the sky signal as measured by the antenna,” he explains.

In the meanwhile, the EDGES collaboration has not been idle. MIT Haystack Observatory’s Cappallo project manages EDGES, which is currently in its third iteration. It is still the size of a desk, but its top now looks like a box, with closed sides and its electronics tucked inside, and an even larger metal ground plate. The team has now made observations from islands in the Canadian archipelago and in Alaska’s Aleutian island chain (see photo at top of article).

“The 2018 EDGES result is not going to be accepted by the community until somebody completely independently verifies it,” Cappallo explains. “But just for our own sanity and also to try to improve on what we can do, we want to see it from as many places as possible and as many conditions as possible.” The EDGES team has replicated its results using the same data analysis pipeline, but no-one else has been able to reproduce the unusual signal.

All the astronomers interviewed welcomed the introduction of new experiments. “I think it’s good to have a rich field of people trying to do this experiment because nobody is going to trust any one measurement,” says Parsons. “We need to build consensus here.”

Taking off

Some astronomers have decided to avoid the struggles of trying to detect the global 21 cm signal from Earth – instead, they have their sights set on the Moon. Earth’s atmosphere is one of the reasons why the 21 cm signal is so difficult to measure. The ionosphere, a charged region of the atmosphere, distorts and contaminates this incredibly faint signal. On the far side of the Moon, any antenna would also be shielded from the cacophony of radio-frequency interference from Earth.

“This is why some experiments are going to the Moon,” says Parsons, adding that he is involved in NASA’s LuSEE-Night experiment. LuSEE-Night, or the Lunar Surface Electromagnetics Experiment, aims to land a low-frequency experiment on the Moon next year.

In July, at the National Astronomical Meeting in Durham, the University of Cambridge’s de Lera Acedo presented a proposal to put a miniature radiometer into lunar orbit. Dubbed “Cosmocube”, it will be a nanosatellite that will orbit the Moon searching for this 21 cm signal.

Illustration of a satellite with sails
Taking the hunt to space Provisional illustration of the CosmoCube with its antenna deployed for the 21 cm signal detection, i.e. in operational mode in space. This nanosatellite would travel to the far side of the Moon to get away from the Earth’s ionosphere, which introduces substantial distortions and absorption effects to any radio signal detection. (CC BY 4.0 Artuc and de Lera Acedo 2024 RAS Techniques and Instruments 4 rzae061)

“It is just in the making,” says de Lera Acedo, adding that it will not be in operation for at least a decade. “But it is the next step.”

In the meanwhile, groups here on Earth are in a race to detect this elusive signal. The instruments are getting more sensitive, the modelling is improving, and the unknowns are reducing. “If we do the experiments right, we will find the signal,” Monsalve believes. The big question is who, of the many groups with their hat in the ring, is doing the experiment “right”.

The post Cosmic dawn: the search for the primordial hydrogen signal appeared first on Physics World.

  •  

Orion: Safeguarding Humanity’s Return to the Moon and the Journey Beyond

NASA’s Orion spacecraft is built around a single, uncompromising principle—crew must return home safely. From the millisecond‑response launch abort system (LAS) perched atop the capsule to the autonomous flight software that […]

The post Orion: Safeguarding Humanity’s Return to the Moon and the Journey Beyond appeared first on SpaceNews.

  •  

Ten-ion system brings us a step closer to large-scale qubit registers

Photo of the members of Ben Lanyon's research group
Team effort Based at the University of Innsbruck, Ben Lanyon’s group has created a novel qubit register by trapping ten ions. (Courtesy: Victor Krutyanskiy/University of Innsbruck)

Researchers in Austria have entangled matter-based qubits with photonic qubits in a ten-ion system. The technique is scalable to larger ion-qubit registers, paving the way for the creation of larger and more complex quantum networks.

Visualization of the ten ion quantum
Ions in motion Each ion (large object) is moved one at a time into the “sweet spot” of the optical cavity. Once there, a laser beam drives the emission of a single photon (small object), entangled with the ion. The colours indicate ion–photon entanglement. (Courtesy: Universität Innsbruck/Harald Ritsch)

Quantum networks consist of matter-based nodes that store and process quantum information and are linked through photons (quanta of light). Already, Ben Lanyon’s group at the University of Innsbruck has made advances in this direction by entangling two ions in different systems. Now, in a new paper published in Physical Review Letters , they describe how they have developed and demonstrated a new method to entangle a string of ten ions with photons. In the future, this approach could enable the entanglement of sets of ions in different locations through light, rather than one ion at a time.

To achieve this, Lanyon and colleagues trapped a chain of 10 calcium ions in a linear trap in an optical cavity. By changing the trapping voltages in the trap, each ion was moved, one-by-one, into the cavity. Once inside, the ion was placed in the “sweet spot”, where the ion’s interaction with the cavity is the strongest. There, the ion  emitted a single photon when exposed to a 393 nm Raman laser beam. This beam was tightly focused on one ion, guaranteeing that the emitted photon – collected in a single-mode optical fibre – comes out from one ion at a time. This process was carried out ten times, one per ion, to obtain a train of ten photons.

By using quantum state tomography, the researchers reconstructed the density matrix, which describes the correlation between the states of ions (i) and photons (j).  To do so, they measure every ion and photon state in three different basis, resulting in nine Pauli-basis configurations of quantum measurements. From the density matrix, the concurrence (a measure of entanglement) between the ion (i) and photon (j) was found to be positive only when  i = j, and equal to zero otherwise. This implies that the ion is uniquely entangled with the photon it produced, and unentangled with the photon produced by other ions.

From the density matrix, they also calculate the fidelity with the Bell state (a state of maximum entanglement), yielding an average 92%. As Marco Canteri points out, “this fidelity characterizes the quality of entanglement between the ion-photon pair for i=j”.

This work developed and demonstrated a technique whereby matter-based qubits and photonic qubits can be entangled, one  at a time, in ion strings.  Now, the group aims to “demonstrate universal quantum logic within the photon-interfaced 10-ion register and, building up towards entangling two remote 10-ion processors through the exchange of photons between them,” explains team member Victor Krutyanskiy. If this method effectively scales to larger systems, more complex quantum networks could be built. This would lead to applications in quantum communication and quantum sensing.

The post Ten-ion system brings us a step closer to large-scale qubit registers appeared first on Physics World.

  •