↩ Accueil

Vue lecture

Why I stopped submitting my work to for-profit publishers

Peer review is a cornerstone of academic publishing. It is how we ensure that published science is valid. Peer review, by which researchers judge the quality of papers submitted to journals, stops pseudoscience from being peddled as equivalent to rigorous research. At the same time, the peer-review system is under considerable strain as the number of journal articles published each year increases, jumping from 1.9 million in 2016 to 2.8 million in 2022, according to Scopus and Web of Science.

All these articles require experienced peer reviewers, with papers typically taking months to go through peer review. This cannot be blamed alone on the time taken to post manuscripts and reviews back and forth between editors and reviewers, but instead is a result of high workloads and, fundamentally, how busy everyone is. Given peer reviewers need to be expert in their field, the pool of potential reviewers is inherently limited. A bottleneck is emerging as the number of papers grows quicker than the number of researchers in academia.

Scientific publishers have long been central to managing the process of peer review. For anyone outside academia, the concept of peer review may seem illogical given that researchers spend their time on it without much acknowledgement. While initiatives are in place to change this such as outstanding-reviewer awards and the Web of Science recording reviewer data, there is no promise that such recognition will be considered when looking for permanent positions or applying for promotion.

The impact of open access

Why, then, do we agree to review? As an active researcher myself in quantum physics, I peer-reviewed more than 40 papers last year and I’ve always viewed it as a duty. It’s a necessary time-sink to make our academic system function, to ensure that published research is valid and to challenge questionable claims. However, like anything people do out of a sense of duty, inevitably there are those who will seek to exploit it for profit.

Many journals today are open access, in which fees, known as article-processing charges, are levied to make the published work freely available online. It makes sense that costs need to be imposed – staff working at publishing companies need paying; articles need editing and typesetting; servers need be maintained and web-hosting fees have to be paid. Recently, publishers have invested heavily in digital technology and developed new ways to disseminate research to a wider audience.

Open access, however, has encouraged some publishers to boost revenues by simply publishing as many papers as possible. At the same time, there has been an increase in retractions, especially of fabricated or manipulated manuscripts sold by “paper mills”. The rise of retractions isn’t directly linked to the emergence of open access, but it’s not a good sign, especially when the academic publishing industry reports profit margins of roughly 40% – higher than many other industries. Elsevier, for instance, publishes nearly 3000 journals and in 2023 its parent company, Relx, recorded a profit of £1.79bn. This is all money that was either paid in open-access fees or by libraries (or private users) for journal subscriptions but ends up going to shareholders rather than science.

It’s important to add that not all academic publishers are for-profit. Some, like the American Physical Society (APS), IOP Publishing, Optica, AIP Publishing and the American Association for the Advancement of Science – as well as university presses – are wings of academic societies and universities. Any profit they make is reinvested into research, education or the academic community. Indeed, IOP Publishing, AIP Publishing and the APS have formed a new “purpose-led publishing” coalition, in which the three publishers confirm that they will continue to reinvest the funds generated from publishing back into research and “never” have shareholders that result in putting “profit above purpose”.

But many of the largest publishers – the likes of Springer Nature, Elsevier, Taylor and Francis, MDPI and Wiley – are for-profit companies and are making massive sums for their shareholders. Should we just accept that this is how the system is? If not, what can we do about it and what impact can we as individuals have on a multi-billion-dollar industry? I have decided that I will no longer review for, nor submit my articles (when corresponding author) to, any for-profit publishers.

I’m lucky in my field that I have many good alternatives such as the arXiv overlay journal Quantum, IOP Publishing’s Quantum Science and Technology, APS’s Physical Review X Quantum and Optica Quantum. If your field doesn’t, then why not push for them to be created? We may not be able to dismantle the entire for-profit publishing industry, but we can stop contributing to it (especially those who have a permanent job in academia and are not as tied down by the need to publish in high impact factor journals). Such actions may seem small, but together can have an effect and push to make academia the environment we want to be contributing to. It may sound radical to take change into your own hands, but it’s worth a try. You never know, but it could help more money make its way back into science.

The post Why I stopped submitting my work to for-profit publishers appeared first on Physics World.

  •  

Visual assistance system helps blind people navigate

Structure and workflow of a wearable visual assistance system
Visual assistance system The wearable system uses intuitive multimodal feedback to assist visually impaired people with daily life tasks. (Courtesy: J Tang et al. Nature Machine Intelligence 10.1038/s42256-025-01018-6, 2005, Springer Nature)

Researchers from four universities in Shanghai, China, are developing a practical visual assistance system to help blind and partially sighted people navigate. The prototype system combines lightweight camera headgear, rapid-response AI-facilitated software and artificial “skins” worn on the wrists and finger that provide physiological sensing. Functionality testing suggests that the integration of visual, audio and haptic senses can create a wearable navigation system that overcomes current designs’ adoptability and usability concerns.

Worldwide, 43 million people are blind, according to 2021 estimates by the International Agency for the Prevention of Blindness. Millions more are so severely visually impaired that they require the use of a cane to navigate.

Visual assistance systems offer huge potential as navigation tools, but current designs have many drawbacks and challenges for potential users. These include limited functionality with respect to the size and weight of headgear, battery life and charging issues, slow real-time processing speeds, audio command overload, high system latency that can create safety concerns, and extensive and sometimes complex learning requirements.

Innovations in miniaturized computer hardware, battery charge longevity, AI-trained software to decrease latency in auditory commands, and the addition of lightweight wearable sensory augmentation material providing near-real-time haptic feedback are expected to make visual navigation assistance viable.

The team’s prototype visual assistance system, described in Nature Machine Intelligence, incorporates an RGB-D (red, green, blue, depth) camera mounted on a 3D-printed glasses frame, ultrathin artificial skins, a commercial lithium-ion battery, a wireless bone-conducting earphone and a virtual reality training platform interfaced via triboelectric smart insoles. The camera is connected to a microcontroller via USB, enabling all computations to be performed locally without the need for a remote server.

When a user sets a target using a voice command, AI algorithms process the RGB-D data to estimate the target’s orientation and determine an obstacle-free direction in real time. As the user begins to walk to the target, bone conduction earphones deliver spatialized cues to guide them, and the system updates the 3D scene in real time.

The system’s real-time visual recognition incorporates changes in distance and perspective, and can compensate for low ambient light and motion blur. To provide robust obstacle avoidance, it combines a global threshold method with a ground interval approach to accurately detect overhead hanging, ground-level and sunken obstacles, as well as sloping or irregular ground surfaces.

First author Jian Tang of Shanghai Jiao Tong University and colleagues tested three audio feedback approaches: spatialized cues, 3D sounds and verbal instructions. They determined that spatialized cues are the most rapid to convey and be understood and provide precise direction perception.

Real-world testing A visually impaired person navigates through a cluttered conference room. (Courtesy: Tang et al. Nature Machine Intelligence)

To complement the audio feedback, the researchers developed stretchable artificial skin – an integrated sensory-motor device that provides near-distance alerting. The core component is a compact time-of-flight sensor that vibrates to stimulate the skin when the distance to an obstacle or object is smaller than a predefined threshold. The actuator is designed as a slim, lightweight polyethylene terephthalate cantilever. A gap between the driving circuit and the skin promotes air circulation to improve skin comfort, breathability and long-term wearability, as well as facilitating actuator vibration.

Users wear the sensor on the back of an index or middle finger, while the actuator and driving circuit are worn on the wrist. When the artificial skin detects a lateral obstacle, it provides haptic feedback in just 18 ms.

The researchers tested the trained system in virtual and real-world environments, with both humanoid robots and 20 visually impaired individuals who had no prior experience of using visual assistance systems. Testing scenarios included walking to a target while avoiding a variety of obstacles and navigating through a maze. Participants’ navigation speed increased with training and proved comparable to walking with a cane. Users were also able to turn more smoothly and were more efficient at pathfinding when using the navigation system than when using a cane.

“The proficient completion of tasks mirroring real-world challenges underscores the system’s effectiveness in meeting real-life challenges,” the researchers write. “Overall, the system stands as a promising research prototype, setting the stage for the future advancement of wearable visual assistance.”

The post Visual assistance system helps blind people navigate appeared first on Physics World.

  •  

Universe may end much sooner than predicted, say theorists

The universe’s maximum lifespan may be considerably shorter than was previously thought, but don’t worry: there’s still plenty of time to finish streaming your favourite TV series.

According to new calculations by black hole expert Heino Falcke, quantum physicist Michael Wondrak, and mathematician Walter van Suijlekom of Radboud University in the Netherlands, the most persistent stellar objects in the universe – white dwarf stars – will decay away to nothingness in around 1078 years. This, Falcke admits, is “a very long time”, but it’s a far cry from previous predictions, which suggested that white dwarfs could persist for at least 101100 years. “The ultimate end of the universe comes much sooner than expected,” he says.

Writing in the Journal of Cosmology and Astroparticle Physics, Falcke and colleagues explain that the discrepancy stems from different assumptions about how white dwarfs decay. Previous calculations of their lifetime assumed that, in the absence of proton decay (which has never been observed experimentally), their main decay process would be something called pyconuclear fusion. This form of fusion occurs when nuclei in a crystalline lattice essentially vibrate their way into becoming fused with their nearest neighbours.

If that sounds a little unlikely, that’s because it is. However, in the dense, cold cores of white dwarf stars, and over stupendously long time periods, pyconuclear fusion happens often enough to gradually (very, very gradually) turn the white dwarf’s carbon into nickel, which then transmutes into iron by emitting a positron. The resulting iron-cored stars are known as black dwarfs, and some theories predict that they will eventually (very, very eventually) collapse into black holes. Depending on how massive they were to start with, the whole process takes between 101100‒1032 000 years.

An alternative mechanism

Those estimates, however, do not take into account an alternative decay mechanism known as Hawking radiation. First proposed in the early 1970s by Stephen Hawking and Jacob Bekenstein, Hawking radiation arises from fluctuations in the vacuum of spacetime. These fluctuations allow particle-antiparticle pairs to pop into existence by essentially “borrowing” energy from the vacuum for brief periods before the pairs recombine and annihilate.

If this pair production happens in the vicinity of a black hole, one particle in the pair may stray over the black hole’s event horizon before it can recombine. This leaves its partner free to carry away some of the “borrowed” energy as Hawking radiation. After an exceptionally long time – but, crucially, not as long as the time required to disappear a white dwarf via pyconuclear fusion – Hawking radiation will therefore cause black holes to dissipate.

The fate of life, the universe and everything?

But what about objects other than black holes? Well, in a previous work published in 2023, Falcke, Wondrak and van Suijlekom showed that a similar process can occur for any object that curves spacetime with its gravitational field, not just objects that have an event horizon. This means that white dwarfs, neutron stars, the Moon and even human beings can, in principle, evaporate away into nothingness via Hawking radiation – assuming that what the trio delicately call “other astrophysical evolution and decay channels” don’t get there first.

Based on this tongue-in-cheek assumption, the trio calculated that white dwarfs will dissipate in around 1078 years, while denser objects such as black holes and neutron stars will vanish in no more than 1067 years. Less dense objects such as humans, meanwhile, could persist for as long as 1090 years – albeit only in a vast, near-featureless spacetime devoid of anything that would make life worth living, or indeed possible.

While that might sound unrealistic as well as morbid, the trio’s calculations do have a somewhat practical goal. “By asking these kinds of questions and looking at extreme cases, we want to better understand the theory,” van Suijlekom says. “Perhaps one day, we [will] unravel the mystery of Hawking radiation.”

The post Universe may end much sooner than predicted, say theorists appeared first on Physics World.

  •  

Subtle quantum effects dictate how some nuclei break apart

Subtle quantum effects within atomic nuclei can dramatically affect how some nuclei break apart. By studying 100 isotopes with masses below that of lead, an international team of physicists uncovered a previously unknown region in the nuclear landscape where fragments of fission split in an unexpected way. This is driven not by the usual forces, but by shell effects rooted in quantum mechanics.

“When a nucleus splits apart into two fragments, the mass and charge distribution of these fission fragments exhibits the signature of the underlying nuclear structure effect in the fission process,” explains Pierre Morfouace of Université Paris-Saclay, who led the study. “In the exotic region of the nuclear chart that we studied, where nuclei do not have many neutrons, a symmetric split was previously expected. However, the asymmetric fission means that a new quantum effect is at stake.”

This unexpected discovery not only sheds light on the fine details of how nuclei break apart but also has far-reaching implications. These range from the development of safer nuclear energy to understanding how heavy elements are created during cataclysmic astrophysical events like stellar explosions.

Quantum puzzle

Fission is the process by which a heavy atomic nucleus splits into smaller fragments. It is governed by a complex interplay of forces. The strong nuclear force, which binds protons and neutrons together, competes with the electromagnetic repulsion between positively charged protons. The result is that certain nuclei are unstable and typically leads to a symmetric fission.

But there’s another, subtler phenomenon at play: quantum shell effects. These arise because protons and neutrons inside the nucleus tend to arrange themselves into discrete energy levels or “shells,” much like electrons do in atoms.

“Quantum shell effects [in atomic electrons] play a major role in chemistry, where they are responsible for the properties of noble gases,” says Cedric Simenel of the Australian National University, who was not involved in the study. “In nuclear physics, they provide extra stability to spherical nuclei with so-called ‘magic’ numbers of protons or neutrons. Such shell effects drive heavy nuclei to often fission asymmetrically.”

In the case of very heavy nuclei, such as uranium or plutonium, this asymmetry is well documented. But in lighter, neutron-deficient nuclei – those with fewer neutrons than their stable counterparts – researchers had long expected symmetric fission, where the nucleus breaks into two roughly equal parts. This new study challenges that view.

New fission landscape

To investigate fission in this less-explored part of the nuclear chart, scientists from the R3B-SOFIA collaboration carried out experiments at the GSI Helmholtz Centre for Heavy Ion Research in Darmstadt, Germany. They focused on nuclei ranging from iridium to thorium, many of which had never been studied before. The nuclei were fired at high energies into a lead target to induce fission.

The fragments produced in each fission event were carefully analysed using a suite of high-resolution detectors. A double ionization chamber captured the number of protons in each product, while a superconducting magnet and time-of-flight detectors tracked their momentum, enabling a detailed reconstruction of how the split occurred.

Using this method, the researchers found that the lightest fission fragments were frequently formed with 36 protons, which is the atomic number of krypton. This pattern suggests the presence of a stabilizing shell effect at that specific proton number.

“Our data reveal the stabilizing effect of proton shells at Z=36,” explains Morfouace. “This marks the identification of a new ‘island’ of asymmetric fission, one driven by the light fragment, unlike the well-known behaviour in heavier actinides. It expands our understanding of how nuclear structure influences fission outcomes.”

Future prospects

“Experimentally, what makes this work unique is that they provide the distribution of protons in the fragments, while earlier measurements in sub-lead nuclei were essentially focused on the total number of nucleons,” comments Simenel.

Since quantum shell effects are tied to specific numbers of protons or neutrons, not just the overall mass, these new measurements offer direct evidence of how proton shell structure shapes the outcome of fission in lighter nuclei. This makes the results particularly valuable for testing and refining theoretical models of fission dynamics.

“This work will undoubtedly lead to further experimental studies, in particular with more exotic light nuclei,” Simenel adds. “However, to me, the ball is now in the camp of theorists who need to improve their modelling of nuclear fission to achieve the predictive power required to study the role of fission in regions of the nuclear chart not accessible experimentally, as in nuclei formed in the astrophysical processes.”

The research is described in Nature.

The post Subtle quantum effects dictate how some nuclei break apart appeared first on Physics World.

  •  

New coronagraph pushes exoplanet discovery to the quantum limit

Diagram of the new coronagraph
How it works Diagram showing simulated light from an exoplanet and its companion star (far left) moving through the new coronagraph. (Courtesy: Nico Deshler/University of Arizona)

A new type of coronagraph that could capture images of dim exoplanets that are extremely close to bright stars has been developed by a team led by Nico Deshler at the University of Arizona in the US. As well as boosting the direct detection of exoplanets, the new instrument could support advances in areas including communications, quantum sensing, and medical imaging.

Astronomers have confirmed the existence of nearly 6000 exoplanets, which are planets that orbit stars other as the Sun. The majority of these were discovered based on their effects on their companion stars, rather than being observed directly. This is because most exoplanets are too dim and too close to their companion stars for the exoplanet light to be differentiated from starlight. That is where a coronagraph can help.

A coronagraph is an astronomical instrument that blocks light from an extremely bright source to allow the observation of dimmer objects in the nearby sky. Coronagraphs were first developed a century ago to allow astronomers to observe the outer atmosphere (corona) of the Sun , which would otherwise be drowned out by light from the much brighter photosphere.

At the heart of a coronagraph is a mask that blocks the light from a star, while allowing light from nearby objects into a telescope. However, the mask (and the telescope aperture) will cause the light to interfere and create diffraction patterns that blur tiny features. This prevents the observation of dim objects that are closer to the star than the instrument’s inherent diffraction limit.

Off limits

Most exoplanets lie within the diffraction limit of today’s coronagraphs and Deshler’s team addressed this problem using two spatial mode sorters. The first device uses a sequence of optical elements to separate starlight from light originating from the immediate vicinity of the star. The starlight is then blocked by a mask while the rest of the light is sent through a second spatial mode sorter, which reconstructs an image of the region surrounding the star.

As well as offering spatial resolution below the diffraction limit, the technique approaches the fundamental limit on resolution that is imposed by quantum mechanics.

“Our coronagraph directly captures an image of the surrounding object, as opposed to measuring only the quantity of light it emits without any spatial orientation,” Deshler describes. “Compared to other coronagraph designs, ours promises to supply more information about objects in the sub-diffraction regime – which lie below the resolution limits of the detection instrument.”

To test their approach, Deshler and colleagues simulated an exoplanet orbiting at a sub-diffraction distance from a host star some 1000 times brighter. After passing the light through the spatial mode sorters, they could resolve the exoplanet’s position – which would have been impossible with any other coronagraph.

Context and composition

The team believe that their technique will improve astronomical images. “These images can provide context and composition information that could be used to determine exoplanet orbits and identify other objects that scatter light from a star, such as exozodiacal dust clouds,” Deshler says.

The team’s coronagraph could also have applications beyond astronomy. With the ability to detect extremely faint signals close to the quantum limit, it could help to improve the resolution of quantum sensors. This could to lead to new methods for detecting tiny variations in magnetic or gravitational fields.

Elsewhere, the coronagraph could help to improve non-invasive techniques for imaging living tissue on the cellular scale – with promising implications in medical applications such as early cancer detection and the imaging of neural circuits. Another potential use could be new multiplexing techniques for optical communications. This would see the coronagraph being used to differentiate between overlapping signals. This has the potential of boosting the rate at which data could be transferred between satellites and ground-based receivers.

The research is described in Optica.

The post New coronagraph pushes exoplanet discovery to the quantum limit appeared first on Physics World.

  •