↩ Accueil

Vue lecture

The obscure physics theory that helped Chinese science emerge from the shadows

“The Straton Model of elementary particles had very limited influence in the West,” said Jinyan Liu as she sat with me in a quiet corner of the CERN cafeteria. Liu, who I caught up with during a break in a recent conference on the history of particle physics, was referring to a particular model of elementary particle physics first put together in China in the mid-1960s. The Straton Model was, and still largely is, unknown outside that country. “But it was an essential step forward,” Liu added, “for Chinese physicists in joining the international community.”

Liu was at CERN to give a talk on how Chinese theorists redirected their research efforts in the years after the Cultural Revolution, which ended in 1976. They switched from the Straton Model, which was a politically infused theory of matter favoured by Mao Zedong, the founder of the People’s Republic of China, to mainstream particle physics as practised by the rest of the world. It’s easy to portray the move as the long-overdue moment when Chinese scientists resumed their “real” physics research. But, Liu told me, “actually it was much more complicated”.

A physicist by training, Liu received her PhD on contemporary theories of spontaneous charge-parity (CP) violation from the Institute of Theoretical Physics at the Chinese Academy of Sciences (CAS) in 2013. She then switched to the CAS Institute for History of Natural Sciences, where she was its first member with a physics PhD. Her initial research topic was the history and development of the Straton Model.

The model is essentially a theory of the structure of hadrons – either baryons (such as protons and neutrons) or mesons (such as pions and kaons). But the model’s origins are as improbable as they are labyrinthine. Mao, who had a keen interest in natural science, was convinced that matter was infinitely divisible, and in 1963 he came across an article by the Marxist-inspired Japanese physicist Shoichi Sakata (1911–1970).

First published in Japanese in 1961 and later translated into Russian, Sakata’s paper was entitled “Dialogues concerning a new view of elementary particles”. It restated Sakata’s belief, which he had been working on since the 1950s, that hadrons are made of smaller constituents – “elementary particles are not the ultimate elements of matter” as he put it. With some Chinese scholars back then still paying close attention to publications from the Soviet Union, their former political and ideological ally, that paper was then translated into Chinese.

Mao Zedong was engrossed in Shoichi Sakata’s paper, for it seemed to offer scientific support for his own views.

This version appeared in the Bulletin of the Studies of Dialectics of Nature in 1963. Mao, who received an issue of that bulletin from his son-in-law, was engrossed in Sakata’s paper, for it seemed to offer scientific support for his own views. Sakata’s article – both in the original Japanese and now in Chinese – cited Friedrich Engels’ view that matter has numerous stages of discrete but qualitatively different parts. In addition, it quoted Lenin’s remark that “even the electron is inexhaustible”.

A wider dimension

“International politics now also entered,” Liu told me, as we discussed the issue further at CERN. A split between China and the Soviet Union had begun to open up in the late 1950s, with Mao breaking off relations with the Soviet Union and starting to establish non-governmental science and technology exchanges between China and Japan. Indeed, when China hosted the Peking Symposium of foreign scientists in 1964, Japan brought the biggest delegation, with Sakata as its leader.

At the event, Mao personally congratulated Sakata on his theory. It was, Sakata later recalled, “the most unforgettable moment of my journey to China”. In 1965, Sakata’s paper was retranslated from the Japanese original, with an annotated version published in Red Flag and the newspaper Renmin ribao, or “People’s Daily”, both official organs of the Chinese Communist Party.

Chinese physicists realized that they could capitalize on Mao’s enthusiasm to make elementary particle physics a legitimate research direction.

Chinese physicists, who had been assigned to work on the atomic bomb and other research deemed important by the Communist Party, now started to take note. Uninterested in philosophy, they realized that they could capitalize on Mao’s enthusiasm to make elementary particle physics a legitimate research direction.

As a result, 39 members of CAS, Peking University and the University of Science and Technology of China formed the Beijing Elementary Particle Group. Between 1965 and 1966, they wrote dozens of papers on a model of hadrons inspired by both Sakata’s work and quark theory based on the available experimental data. It was dubbed the Straton Model because it involved layers or “strata” of particles nested in each other.

Liu has interviewed most surviving members of the group and studied details of the model. It differed from the model being developed at the time by the US theorist Murray Gell-Mann, which saw quarks as not physical but mathematical elements. As Liu discovered, Chinese particle physicists were now given resources they’d never had before. In particular, they could use computers, which until then had been devoted to urgent national defence work. “To be honest,” Liu chuckled, “the elementary particle physicists didn’t use computers much, but at least they were made available.”

The high-water mark for the Straton Model occurred in July 1966 when members of the Beijing Elementary Particle Group presented it at a summer physics colloquium organized by the China Association for Science and Technology. The opening ceremony was held in Tiananmen Square, in what was then China’s biggest conference centre, with attendees including Abdus Salam from Imperial College London. The only high-profile figure to be invited from the West, Salam was deemed acceptable because he was science advisor to the president of Pakistan, a country considered outside the western orbit.

The proceedings of the colloquium were later published as “Research on the theory of elementary particles carried out under the brilliant illumination of Mao Tse-Tung’s thought”. Its introduction was what Liu calls a “militant document” – designed to reinforce the idea that the authors were carrying Mao’s thought into scientific research to repudiate “decadent feudal, bourgeois and revisionist ideologies”.

Participants in Beijing had expected to make their advances known internationally by publishing the proceedings in English. But the Cultural Revolution had just begun two months before, and publications in English were forbidden. “As a result,” Liu told me, “the model had very limited influence outside China.” Sakata, however, had an important influence on Japanese theorists having co-authored the key paper on neutrino flavour oscillation (Prog. Theoretical. Physics 28 870).

A resurfaced effort

In recent years, Liu has shed new light on the Straton Model, writing a paper in the journal Chinese Annals of History of Science and Technology (2 85). In 2022, she also published a 2022 Chinese-language book entitled Constructing a Theory of Hadron Structure: Chinese Physicists’ Straton Model, which describes the downfall of the model after 1966. None of its predicted material particles appeared, though a candidate event once occurred in a cosmic ray observatory in the south of China.

By 1976, quantum chromodynamics (QCD) had convincingly emerged as the established model of hadrons. The effective end of the Straton Model took place at a conference in January 1980 in Conghua, near Hong Kong. Hung-Yuan Tzu, one of the key leaders of the Beijing Group, gave a paper entitled “Reminiscences of the Straton Model”, signalling that physics had moved on.

During our meeting at CERN, Liu showed me photos of the 1980 event. “It was a very important conference in the history of Chinese physics,” she said, “the first opening to Chinese physicists in the West”. Visits by Chinese expatriates were organized by Tsung-Dao Lee and Chen-Ning Yang, who shared the 1957 Nobel Prize for Physics for their work on parity violation.

The critical point

It is easy for westerners to mock the Straton Model; Sheldon Glashow once referred to it as about “Maons”. But Liu sees it as significant research that had many unexpected consequences, such as helping to advance physics research in China. “It gave physicists a way to pursue quantum field theory without having to do national defence work”.

The model also trained young researchers in particle physics and honed their research competence. After the post-Cultural Revolution reform and its opening to the West, these physicists could then integrate into the international community. “The story,” Liu said, “shows how ingeniously the Chinese physicists adapted to the political situation.”

The post The obscure physics theory that helped Chinese science emerge from the shadows appeared first on Physics World.

  •  

Can we compare Donald Trump’s health chief to Soviet science boss Trofim Lysenko?

The US has turned Trofim Lysenko into a hero.

Born in 1898, Lysenko was a Ukrainian plant breeder, who in 1927 found he could make pea and grain plants develop at different rates by applying the right temperatures to their seeds. The Soviet news organ Pravda was enthusiastic, saying his discovery could make crops grow in winter, turn barren fields green, feed starving cattle and end famine.

Despite having trained as a horticulturist, Lysenko rejected the then-emerging science of genetics in favour of Lamarckism, according to which organisms can pass on acquired traits to offspring. This meshed well with the Soviet philosophy of “dialectical materialism”, which sees both the natural and human worlds as evolving not through mechanisms but environment.

Stalin took note of Lysenko’s activities and had him installed as head of key Soviet science agencies. Once in power, Lysenko dismissed scientists who opposed his views, cancelled their meetings, funded studies of discredited theories, and stocked committees with loyalists. Although Lysenko had lost his influence by the time Stalin died in 1953 – with even Pravda having turned against him – Soviet agricultural science had been destroyed.

A modern parallel

Lysenko’s views and actions have a resonance today when considering the activities of Robert F Kennedy Jr, who was appointed by Donald Trump as secretary of the US Department of Health and Human Services in February 2025. Of course, Trump has repeatedly sought to impose his own agenda on US science, with his destructive impact outlined in a detailed report published by the Union of Concerned Scientists in July 2025.

Last May Trump signed executive order 14303, “Restoring Gold Standard Science”, which blasts scientists for not acting “in the best interests of the public”. He has withdrawn the US from the World Health Organization (WHO), ordered that Federal-sponsored research fund his own priorities, redefined the hazards of global warming, and cancelled the US National Climate Assessment (NSA), which had been running since 2000.

But after Trump appointed Kennedy, the assault on science continued into US medicine, health and human services. In what might be called a philosophy of “political materialism”, Kennedy fired all 17 members of the Advisory Committee on Immunization Practices of the US Centers for Disease Control and Prevention (CDC), cancelled nearly $500m in mRNA vaccine contracts, hired a vaccine sceptic to study its connection with autism despite numerous studies that show no connection, and ordered the CDC to revise its website to reflect his own views on the cause of autism.

In his 2021 book The Real Anthony Fauci: Bill Gates, Big Pharma, and the Global War on Democracy and Public Health, Kennedy promotes not germ theory but what he calls “miasma theory”, according to which diseases are prevented by nutrition and lifestyle.

Divergent stories

Of course, there are fundamental differences between the 1930s Soviet Union and the 2020s United States. Stalin murdered and imprisoned his opponents, while the US administration only defunds and fires them. Stalin and Lysenko were not voted in, while Trump came democratically to power, with elected representatives confirming Kennedy. Kennedy has also apologized for his most inflammatory remarks, though Stalin and Lysenko never did (nor does Trump for that matter).

What’s more, Stalin’s and Lysenko’s actions were more grounded in apparent scientific realities and social vision than Trump’s or Kennedy’s. Stalin substantially built up much of the Soviet science and technology infrastructure, whose dramatic successes include launching the first Earth satellite Sputnik in 1957. Though it strains credulity to praise Stalin, his vision to expand Soviet agricultural production during a famine was at least plausible and its intention could be portrayed as humanitarian. Lysenko was a scientist, Kennedy is not.

As for Lysenko, his findings seemed to carry on those of his scientific predecessors. Experimentally, he expanded the work of Russian botanist Ivan Michurin, who bred new kinds of plants able to grow in different regions. Theoretically, his work connected not only with dialectical materialism but also with that of the French naturalist Jean-Baptiste Lamarck, who claimed that acquired traits can be inherited.

Trump and Kennedy are off-the-wall by comparison. Trump has called climate change a con job and hoax and seeks to stop research that says otherwise. In 2019 he falsely stated that Hurricane Dorian was predicted to hit Alabama, then ordered the National Oceanic and Atmospheric Administration to issue a statement supporting him. Trump has said he wants the US birth rate to rise and that he will be the “fertilization president”, but later fired fertility and IVF researchers at the CDC.

As for Kennedy, he has said that COVID-19 “is targeted to attack Caucasians and Black people” and that Ashkenazi Jews and Chinese are the most immune (he disputed the remark, but it’s on video). He has also sought to retract a 2025 vaccine study from the Annals of Internal Medicine (178 1369) that directly refuted his views on autism.

The critical point

US Presidents often have pet scientific projects. Harry Truman created the National Science Foundation, Dwight D Eisenhower set up NASA, John F Kennedy started the Apollo programme, while Richard Nixon launched the Environmental Protection Agency (EPA) and the War on Cancer. But it’s one thing to support science that might promote a political agenda and another to quash science that will not.

One ought to be able to take comfort in the fact that if you fight nature, you lose – except that the rest of us lose as well. Thanks to Lysenko’s actions, the Soviet Union lost millions of tons of grain and hundreds of herds of cattle. The promise of his work evaporated and Stalin’s dreams vanished.

Lysenko, at least, was motivated by seeming scientific promise and social vision; the US has none. Trump has damaged the most important US scientific agencies, destroyed databases and eliminated the EPA’s research arm, while Kennedy has replaced health advisory committees with party loyalists.

While Kennedy may not last his term – most Trump Cabinet officials don’t – the paths he has sent science policy on surely will. For Trump and Kennedy, the policy seems to consist only of supporting pet projects. Meanwhile, cases of measles in the US have reached their highest level in three decades, the seas continue to rise and the climate is changing. It is hard to imagine how enemy agents could damage US science more effectively.

The post Can we compare Donald Trump’s health chief to Soviet science boss Trofim Lysenko? appeared first on Physics World.

  •  

Is Donald Trump conducting a ‘blitzkrieg’ on science?

“Drain the swamp!”

In the intense first few months of his second US presidency, Donald Trump has been enacting his old campaign promise with a vengeance. He’s ridding all the muck from the American federal bureaucracy, he claims, and finally bringing it back under control.

Scientific projects and institutions are particular targets of his, with one recent casualty being the High Energy Physics Advisory Panel (HEPAP). Outsiders might shrug their shoulders at a panel of scientists being axed. Panels come and go. Also, any development in Washington these days is accompanied by confusion, uncertainty, and the possibility of reversal.

But HEPAP’s dissolution is different. Set up in 1967, it’s been a valuable and long-standing advisory committee of the Office of Science at the US Department of Energy (DOE). HEPAP has a distinguished track record of developing, supporting and reviewing high-energy physics programmes, setting priorities and balancing different areas. Many scientists are horrified by its axing.

The terminator

Since taking office in January 2025, Trump has issued a flurry of executive orders – presidential decrees that do not need Congressional approval, legislative review or public debate. One order, which he signed in February, was entitled “Commencing the Reduction of the Federal Bureaucracy”.

It sought to reduce parts of the government “that the President has determined are unnecessary”, seeking to eliminate “waste and abuse, reduce inflation, and promote American freedom and innovation”. While supporters see those as laudable goals, opponents believe the order is driving a stake into the heart of US science.

Hugely valuable, long-standing scientific advisory committees have been axed at key federal agencies, including NASA, the National Science Foundation, the Environmental Protection Agency, the National Oceanic and Atmospheric Administration, the US Geological Service, the National Institute of Health, the Food and Drug Administration, and the Centers for Disease Control and Prevention.

What’s more, the committees were terminated without warning or debate, eliminating load-bearing pillars of the US science infrastructure. It was, as the Columbia University sociologist Gil Eyal put it in a recent talk, the “Trump 2.0 Blitzkrieg”.

Then, on 30 September, Trump’s enablers took aim at advisory committees at the DOE Office of Science. According to the DOE’s website, a new Office of Science Advisory Committee (SCAC) will take over functions of the six former discretionary (non-legislatively mandated) Office of Science advisory committees.

“Any current charged responsibilities of these former committees will be transferred to the SCAC,” the website states matter-of-factly. The committee will provide “independent, consensus advice regarding complex scientific and technical issues” to the entire Office of Science. Its members will be appointed by under secretary for science Dario Gil – a political appointee.

Apart from HEPAP, others axed without warning were the Nuclear Science Advisory Committee, the Basic Energy Sciences Advisory Committee, the Fusion Energy Sciences Advisory Committee, the Advanced Scientific Computing Advisory Committee, and the Biological and Environmental Research Advisory Committee.

Over the years, each committee served a different community and was represented by prominent research scientists who were closely in touch with other researchers. Each committee could therefore assemble the awareness of – and technical knowledge about – emerging promising initiatives and identify the less promising ones.

Many committee members only learned of the changes when they received letters or e-mails out of the blue informing them that their committee had been dissolved, that a new committee had replaced them, and that they were not on it. No explanation was given.

Closing HEPAP and the other Office of Science committees will hamper both the technical support and community input that it has relied on to promote the efficient, effective and robust growth of physics

Physicists whom I have spoken to are appalled for two main reasons. One is that closing HEPAP and the other Office of Science committees will hamper both the technical support and community input that it has relied on to promote the efficient, effective and robust growth of physics.

“Speaking just for high-energy physics, HEPAP gave feedback on the DOE and NSF funding strategies and priorities for the high-energy physics experiments,” says Kay Kinoshita from the University of Cincinnati, a former HEPAP member. “The panel system provided a conduit for information between the agencies and the community, so the community felt heard and the agencies were (mostly) aligned with the community consensus”.

As Kinoshita continued: “There are complex questions that each panel has to deal with. even within the topical area. It’s hard to see how a broader panel is going to make better strategic decisions, ‘better’ meaning in terms of scientific advancement. In terms of community buy-in I expect it will be worse.”

Other physicists cite a second reason for alarm. The elimination of the advisory committees spreads the expertise so thinly as to increase the likelihood of political pressure on decisions. “If you have one committee you are not going to get the right kind of fine detail,” says Michael Lubell, a physicist and science-policy expert at the City College of New York, who has sat in on meetings of most of the Office of Science advisory committees.

“You’ll get opinions from people outside that area and you won’t be able to get information that you need as a policy maker to decide how the resources are to be allocated,” he adds. “A condensed-matter physicist for example, would probably have insufficient knowledge to advise DOE on particle physics. Instead, new committee members would be expected to vet programs based on ideological conformity to what the Administration wants.”

The critical point

At the end of the Second World War, the US began to construct an ambitious long-range plan to promote science that began with the establishment of the National Science Foundation in 1950 and developed and extended ever since. The plan aimed to incorporate both the ability of elected politicians to direct science towards social needs and the independence of scientists to explore what is possible.

US presidents have, of course, had pet scientific projects: the War on Cancer (Nixon), the Moon Shot (Kennedy), promoting renewable energy (Carter), to mention a few. But it is one thing for a president to set science to producing a socially desirable product and another to manipulate the scientific process itself.

“This is another sad day for American science,” says Lubell. “If I were a young person just embarking on a career, I would get the hell out of the country. I would not want to waste the most creative years of my life waiting for things to turn around, if they ever do. What a way to destroy a legacy!”

The end of HEPAP is not draining a swamp but creating one.

The post Is Donald Trump conducting a ‘blitzkrieg’ on science? appeared first on Physics World.

  •  
❌