The private firm Intuitive Machines has launched a lunar lander to test extraction methods for water and volatile gases. The six-legged Moon lander, dubbed Athena, took off yesterday aboard a SpaceX Falcon 9 rocket from NASA’s Kennedy Space Center in Florida . Also aboard the rocket was NASA’s Lunar Trailblazer – a lunar orbiter that will investigate water on the Moon and its geology.
In February 2024, Intuitive Machines’ Odysseus mission became the first US mission to make a soft landing on the Moon since Apollo 17 and the first private craft to do so. After a few hiccups during landing, the mission carried out measurements with an optical and radio telescope before it ended seven days later.
Athena is the second lunar lander by Intuitive Machines in its quest to build infrastructure on the Moon that would be required for long-term lunar exploration.
The mission, standing almost five meters tall, aims to land in the Mons Mouton region, which is about 160 km from the lunar south pole.
It will use a drill to bore one meter into the surface and test the extraction of substances – including volatiles such as carbon dioxide as well as water – that it will then analyse with a mass spectrometer.
Athena also contains a “hopper” dubbed Grace that can travel up to 25 kilometres on the lunar surface. Carrying about 10 kg of payloads, the rocket-propelled drone will aim to take images of the lunar surface and explore nearby craters.
As well as Grace, Athena carries two rovers. MAPP, built by Lunar Outpost, will autonomously navigate the lunar surface while a small, lightweight rover dubbed Yaoki, which has been built by the Japanese firm Dymon, will explore the Moon within 50 meters of the lander.
Athena is part of NASA’s $2.6bn Commercial Lunar Payload Services initiative, which contracts the private sector to develop missions with the aim of reducing costs.
Taking the Moon’s temperature
Lunar Trailblazer, meanwhile, will spend two years orbiting the Moon from a 100 km altitude polar orbit. Weighing 200 kg and about the size of a washing machine, it will map the distribution of water on the Moon’s surface about 12 times a day with a resolution of about 50 meters.
While it is known that water exists on the lunar surface, little is known about its form, abundance, distribution or how it arrived. Various hypothesis range from “wet” asteroids crashing into the Moon to volcanic eruptions producing water vapour from the Moon’s interior.
Water hunter: NASA’s Lunar Trailblazer will spend two years mapping the distribution of water on the surface of the Moon (courtesy: Lockheed Martin Space for Lunar Trailblazer)
To help answer that question, the craft will examine water deposits via an imaging spectrometer dubbed the High-resolution Volatiles and Minerals Moon Mapper that has been built by NASA’s Jet Propulsion Laboratory.
A thermal mapper, meanwhile, that has been developed by the University of Oxford, will plot the temperature of the Moon’s surface and help to confirm the presence and location of water.
Lunar Trailblazer was selected in 2019 as part of NASA’s Small Innovative Missions for Planetary Exploration programme.
The fusion physicist Ian Chapman is to be the next head of UK Research and Innovation (UKRI) – the UK’s biggest public research funder. He will take up the position in June, replacing the geniticist Ottoline Leyser who has held the position since 2020.
UK science minister Patrick Vallance notes that Chapman’s “leadership experience, scientific expertise and academic achievements make him an exceptionally strong candidate to lead UKRI”.
UKRI chairman Andrew Mackenzie, meanwhile, states that Chapman “has the skills, experience, leadership and commitment to unlock this opportunity to improve the lives and livelihoods of everyone”.
Hard act to follow
After gaining an MSc in mathematics and physics from Durham University, Chapman completed a PhD at Imperial College London in fusion science, which he partly did at Culham Science Centre in Oxfordshire.
In 2014 he became head of tokamak science at Culham and then became fusion programme manager a year later. In 2016, aged just 34, he was named chief executive of the UK Atomic Energy Authority (UKAEA), which saw him lead the UK’s magnetic confinement fusion research programme at Culham.
In that role he oversaw an upgrade to the lab’s Mega Amp Spherical Tokamak as well as the final operation of the Joint European Torus (JET) – one of the world’s largest nuclear fusion devices – that closed in 2024.
Chapman also played a part in planning a prototype fusion power plant. Known as the Spherical Tokamak for Energy Production (STEP), it was first announced by the UK government in 2019 with operations expected to begin in the 2040s with STEP aiming to prove the commercial viability of fusion by demonstrating net energy, fuel self-sufficiency and a viable route to plant maintenance.
Chapman, who currently sits on UKRI’s board, says that he is “excited” to take over as head of UKRI. “Research and innovation must be central to the prosperity of our society and our economy, so UKRI can shape the future of the country,” he notes. “I was tremendously fortunate to represent UKAEA, an organisation at the forefront of global research and innovation of fusion energy, and I look forward to building on those experiences to enable the wider UK research and innovation sector.”
The UKAEA has announced that Tim Bestwick, who is currently UKAEA’s deputy chief executive, will take over as interim UKAEA head until a permanent replacement is found.
Steve Cowley, director of the Princeton Plasma Physics Laboratory in the US and a former chief executive of UKAEA, told Physics World that Chapman is an “astonishing science leader” and that the UKRI is in “excellent hands”. “[Chapman] has set a direction for UK fusion research that is bold and inspired,” adds Cowley. “It will be a hard act to follow but UK fusion development will go ahead with great energy.”
Working with “student LEGO enthusiasts”, they have developed a fully functional LEGO interferometer kit that consists of lasers, mirrors, beamsplitters and, of course, some LEGO bricks.
The set, designed as a teaching aid for secondary-school pupils and older, is aimed at making quantum science more accessible and engaging as well as demonstrating the basic principles of interferometry such as interference patterns.
“Developing this project made me realise just how incredibly similar my work as a quantum scientist is to the hands-on creativity of building with LEGO,” notes Nottingham quantum physicist Patrik Svancara. “It’s an absolute thrill to show the public that cutting-edge research isn’t just complex equations. It’s so much more about curiosity, problem-solving, and gradually bringing ideas to life, brick by brick!”
A team at Cardiff University will now work on the design and develop materials that can be used to train science teachers with the hope that the sets will eventually be made available throughout the UK.
“We are sharing our experiences, LEGO interferometer blueprints, and instruction manuals across various online platforms to ensure our activities have a lasting impact and reach their full potential,” adds Svancara.
If you want to see the LEGO interferometer in action for yourself then it is being showcased at the Cosmic Titans: Art, Science, and the Quantum Universe exhibition at Nottingham’s Djanogly Art Gallery, which runs until 27 April.
I studied physics at the University of Oxford and I was the first person in my family to go to university. I then completed a DPhil at Oxford in 1991 studying cosmic rays and neutrinos. In 1992 I moved to University College London as a research fellow. That was the first time I went to CERN and two years later I began working on the Large Electron-Positron Collider, which was the predecessor of the Large Hadron Collider. I was fortunate enough to work on some of the really big measurements of the W and Z bosons and electroweak unification, so it was a great time in my life. In 2000 I worked at the University of Cambridge where I set up a neutrino group. It was then that I began working at Fermilab – the US’s premier particle physics lab.
So you flipped from collider physics to neutrino physics?
Over the past 20 years, I have oscillated between them and sometimes have done both in parallel. Probably the biggest step forward was in 2013 when I became spokesperson for the Deep Underground Neutrino Experiment – a really fascinating, challenging and ambitious project. In 2018 I was then appointed executive chair of the Science and Technology Facilities Council (STFC) – one of the main UK funding agencies. The STFC funds particle physics and astronomy in the UK and maintains relationships with organizations such as CERN and the Square Kilometre Array Observatory, as well as operating some of the UK’s biggest national infrastructures such as the Rutherford Appleton Laboratory and the Daresbury Laboratory.
What did that role involve?
It covered strategic funding of particle physics and astronomy in the UK and also involved running a very large scientific organization with about 2800 scientific, technical and engineering staff. It was very good preparation for the role as CERN director-general.
What attracted you to become CERN director-general?
CERN is such an important part of the global particle-physics landscape. But I don’t think there was ever a moment where I just thought “Oh, I must do this”. I’ve spent six years on the CERN Council, so I know the organization well. I realized I had all of the tools to do the job – a combination of the science, knowing the organization and then my experience in previous roles. CERN has been a large part of my life for many years, so it’s a fantastic opportunity for me.
It was quite a surreal moment. My first thoughts were “Well, OK, that’s fun”, so it didn’t really sink in until the evening. I’m obviously very happy and it was fantastic news but it was almost a feeling of “What happens now?”.
What so does happen now as CERN director-general designate?
There will be a little bit of shadowing, but you can’t shadow someone for the whole year, that doesn’t make very much sense. So what I really have to do is understand the organization, how it works from the inside and, of course, get to know the fantastic CERN staff, which I’ve already started doing. A lot of my time at the moment is meeting people and understanding how things work.
How might you do things differently?
I don’t think I will do anything too radical. I will have a look at where we can make things work better. But my priority for now is putting in place the team that will work with me from January. That’s quite a big chunk of work.
We have a decision to make on what comes after the High Luminosity-LHC in the mid-2040s
What do you think your leadership style will be?
I like to put around me a strong leadership team and then delegate and trust the leadership team to deliver. I’m there to set the strategic direction but also to empower them to deliver. That means I can take an outward focus and engage with the member states to promote CERN. I think my leadership style is to put in place a culture where the staff can thrive and operate in a very open and transparent way. That’s very important to me because it builds trust both within the organization and with CERN’s partners. The final thing is that I’m 100% behind CERN being an inclusive organization.
So diversity is an important aspect for you?
I am deeply committed to diversity and CERN is deeply committed to it in all its forms, and that will not change. This is a common value across Europe: our member states absolutely see diversity as being critical, and it means a lot to our scientific communities as well. From a scientific point of view, if we’re not supporting diversity, we’re losing people who are no different from others who come from more privileged backgrounds. Also, diversity at CERN has a special meaning: it means all the normal protected characteristics, but also national diversity. CERN is a community of 24 member states and quite a few associate member states, and ensuring nations are represented is incredibly important. It’s the way you do the best science, ultimately, and it’s the right thing to do.
The LHC is undergoing a £1bn upgrade towards a High Luminosity-LHC (HL-LHC), what will that entail?
The HL-LHC is a big step up in terms of capability and the goal will be to increase the luminosity of the machine. We are also upgrading the detectors to make them even more precise. The HL-LHC will run from about 2030 to the early 2040s. So by the end of LHC operations, we would have only taken about 10% of the overall data set once you add what the HL-LHC is expected to produce.
What physics will that allow?
There’s a very specific measurement that we would like to make around the nature of the Higgs mechanism. There’s something very special about the Higgs boson that it has a very strange vacuum potential, so it’s always there in the vacuum. With the HL-LHC, we’re going to start to study the structure of that potential. That’s a really exciting and fundamental measurement and it’s a place where we might start to see new physics.
Beyond the HL-LHC, you will also be involved in planning what comes next. What are the options?
We have a decision to make on what comes after the HL-LHC in the mid-2040s. It seems a long way off but these projects need a 20-year lead-in. I think the consensus amongst the scientific community for a number of years has been that the next machine must explore the Higgs boson. The motivation for a Higgs factory is incredibly strong.
Yet there has not been much consensus whether that should be a linear or circular machine?
My personal view is that a circular collider is the way forward. One option is the Future Circular Collider (FCC) – a 91 km circumference collider that would be built at CERN.
What would the benefits of the FCC be?
We know how to build circular colliders and it gives you significantly more capability than a linear machine by producing more Higgs bosons. It is also a piece of research infrastructure that will be there for many years beyond the electron–positron collider. The other aspect is that at some point in the future, we are going to want a high-energy hadron collider to explore the unknown.
But it won’t come cheap, with estimates being about £12–15bn for the electron–positron version, dubbed FCC-ee?
While the price tag for the FCC-ee is significant, that is spread over 24 member states for 15 years and contributions can also come from elsewhere. I’m not saying it’s going to be easy to actually secure that jigsaw puzzle of resource, because money will need to come from outside Europe as well.
China is also considering the Circular Electron Positron Collider (CEPC) that could, if approved, be built by the 2030s. What would happen to the FCC if the CEPC were to go ahead?
I think that will be part of the European Strategy for Particle Physics, which will happen throughout this year, to think about the ifs and buts. Of course, nothing has really been decided in China. It’s a big project and it might not go ahead. I would say it’s quite easy to put down aggressive timescales on paper but actually delivering them is always harder. The big advantage of CERN is that we have the scientific and engineering heritage in building colliders and operating them. There is only one CERN in the world.
What do you make of alternative technologies such as muon colliders that could be built in the existing LHC tunnel and offer high energies?
It’s an interesting concept but technically we don’t know how to do it. There’s a lot of development work but it’s going to take a long time to turn that into a real machine. So looking at a muon collider on the time scale of the mid-2040s is probably unrealistic. What is critical for an organization like CERN and for global particle physics is that when the HL-LHC stops by 2040, there’s not a large gap without a collider project.
Last year CERN celebrated its 70th anniversary, what do you think particle physics might look like in the next 70 years?
If you look back at the big discoveries over the last 30 years we’ve seen neutrino oscillations, the Higgs boson, gravitational waves and dark energy. That’s four massive discoveries. In the coming decade we will know a lot more about the nature of the neutrino and the Higgs boson via the HL-LHC. The big hope is we find something else that we don’t expect.
The exhibition – Freedom in the Equation – shares the stories of 10 scientists to highlight Ukraine’s lost scientific potential due to Russia’s aggression towards the country while also shedding light on the contributions of Ukrainian scientists.
Among them are physicists Vasyl Kladko and Lev Shubnikov. Kladko worked on semiconductor physics and was deputy director of the Institute of Semiconductor Physics in Kyiv. He was killed in 2022 at the age of 65 as he tried to help his family flee Russia’s invasion.
Shubnikov, meanwhile, established a cryogenic lab at the Ukrainian Institute of Physics and Technology in Kharkiv (now known as the Kharkiv Institute of Physics and Technology) in the early 1930s. In 1937, Shubnikov was arrested during Stalin’s regime and accused of espionage and was executed shortly after.
The scientists were selected by Oleksii Boldyrev, a molecular biologist and founder of the online platform myscience.ua, together with Krystyna Semeryn, a literary scholar and publicist.
The portraits were created by Niklas Elemehed, who is the official artist of the Nobel prize, with the text compiled by Olesia Pavlyshyn, editor-in-chief at the Ukrainian popular-science outlet Kunsht.
The exhibition, which is part of the Science at Risk project, runs until 10 March. “Today, I witness scientists being killed, and preserving their names has become a continuation of my work in historical research and a continuation of resistance against violence toward Ukrainian science,” says Boldyrev.
The European Space Agency (ESA) has released a spectacular image of an Einstein ring – a circle of light formed around a galaxy by gravitational lensing. Taken by the €1.4bn Euclid mission, the ring is a result of the gravitational effects of a galaxy located around 590 million light-years from Earth.
Euclid was launched in July 2023 and is currently located in a spot in space called Lagrange Point 2 – a gravitational balance point some 1.5 million kilometres beyond the Earth’s orbit around the Sun. Euclid has a 1.2 m-diameter telescope, a camera and a spectrometer that it uses to plot a 3D map of the distribution of more than two billion galaxies. The images it takes are about four times as sharp as current ground-based telescopes.
Einstein’s general theory of relativity predicts that light will bend around objects in space, so that they focus the light like a giant lens. This gravitational lensing effect is bigger for more massive objects and means we can sometimes see the light from distant galaxies that would otherwise be hidden.
Yet if the alignment is just right, the light from the distant source galaxy bends to form a spectacular ring around the foreground object. In this case, the mass of galaxy NGC 6505 is bending and magnifying the light from a more distant galaxy, which is about 4.42 billion light-years away, into a ring.
Studying such rings can shed light on the expansion of the universe as well as the nature of dark matter.
Euclid’s first science results were released in May 2024, following its first shots of the cosmos in November 2023. Hints of the ring were first spotted in September 2023 when Euclid was being testing with follow-up measurements now revealing it in exquisite detail.
Gravitational waves are distortions of space–time that occur when massive bodies, such as black holes, are accelerated. They were first detected in 2016 by researchers working on the Advanced Laser Interferometer Gravitational-wave Observatory (aLIGO) located in Hanford, Washington and Livingston, Louisiana.
LISA comprises three identical satellites in an equilateral triangle in space, with each side of the triangle being 2.5 million kilometres – more than six times the distance between the Earth and the Moon.
While ground-based instruments detect gravitational waves with a frequency from a few Hz to a KHz, a space-based mission could pick up gravitational waves with frequencies between 10–4–10–1 Hz.
According to Hong-Bo Jin from the National Astronomical Observatories, Chinese Academy of Sciences, in Beijing, one disadvantage of a triangular array is that when the direction of gravitational-wave propagation as a transverse wave is parallel to the plane of the triangle, it is more difficult to detect the source of the gravitational wave.
A tetrahedral configuration could get around this problem while Jin says that an additional advantage is the extra combinations of optical paths possible with six arms. This means it could be sensitive to six polarization modes of gravitational waves. Einstein’s general theory of relativity predicts that gravitational waves have only two tensor polarization modes, so any detection of so-called vector or scalar polarization modes could signal new physics.
“Detecting gravitational waves based on the TEGO configuration will possibly reveal more polarization modes of gravitational waves, which is conducive to deepening our understanding of general relativity and revealing the essence of gravity and spacetime,” says Jin.
Yet such a design will come with costs. Given that the equipment for TEGO, including the telescopes and optical benches, is twice that of a triangular configuration, estimates for a tetrahedral set-up could also be double.
While TEGO has a separate technical route than TAIJI, Jin says it can “refer” to some of its mature technologies. Given that many technologies still need to be demonstrated and developed, however, TEGO has no specific timeline for when it could be launched.
Italian gravitational-wave physicist Stefano Vitale, a former principal investigator of the LISA Pathfinder mission, told Physics World that “polyhedric” configurations of gravitational-wave detectors are “not new” and are much more difficult to implement than LISA. He adds that even aligning a three-satellite configuration such as LISA is “extremely challenging” and is something the aerospace community has never tried before.
“Going off-plane, like the TEGO colleagues want to do, with telescope add-ons, opens a completely new chapter [and] cannot be considered as incremental relative to LISA,” adds Vitale.
Written with Los Alamos National Laboratory theoretical physicist Ian Tregillis, who is also a science-fiction author of several books, they have derived a mathematical model of the so-called wild cards virus.
The Wild Cards universe is a series of novels created by a consortium of writers including Martin and Tregillis.
Set largely during an alternate history of the US following the Second World War, the series follows events after an extraterrestrial virus, known as the Wild Card virus, has spread worldwide. It mutates human DNA causing profound changes in human physiology and society at large.
The virus follows a fixed statistical distribution of outcomes in that 90% of those infected die, 9% become physically mutated (referred to as “jokers”) and 1% gain superhuman abilities (known as “aces”). Such capabilities include the ability to fly as well as being able to move between dimensions. The stories in the series then follow the individuals that have been impacted by the virus.
Tregillis and Martin have now derived a formula for the viral behaviour of the Wild Card virus. “Like any physicist, I started with back-of-the-envelope estimates, but then I went off the deep end,” notes Tregillis. “Being a theoretician, I couldn’t help but wonder if a simple underlying model might tidy up the canon.”
The model takes into consideration the severity of the changes (for the 10% that don’t instantly die) and the mix of joke/ace traits. After all, those infected can also become cryto-jokers or crypto-aces – undetected cases where individuals have subtle changes or powers – as well as joker-aces, in which a human develops both mutations and superhuman abilities.
The result is a dynamical system in which a carrier’s state vector constantly evolves through the model space — until their “card” turns. At that point the state vector becomes fixed and its permanent location determines the fate of the carrier. “The time-averaged behavior of this system generates the statistical distribution of outcomes,” adds Tregillis.
The purpose of the paper, and the model, is also to provide an exercise in demonstrating how “whimsical” scenarios can be used to explore concepts in physics and mathematics.
“The fictional virus is really just an excuse to justify the world of Wild Cards, the characters who inhabit it, and the plot lines that spin out from their actions,” says Tregillis.
Update 20/02/2025: On 18 February, officials at France’s atomic energy commission (CEA) announced that its WEST Tokamak reactor, which is based in Cadarache, France, had maintained a steady-state high-confinement plasma for 1336 seconds.
A fusion tokamak in China has smashed its previous fusion record of maintaining a steady-state plasma. This week, scientists working on the Experimental Advanced Superconducting Tokamak (EAST) announced that they had produced a steady-state high-confinement plasma for 1066 seconds, breaking EAST’s previous 2023 record of 403 seconds.
EAST is an experimental superconducting tokamak fusion device located in Hefei, China. Operated by the Institute of Plasma Physics (AISPP) at the Hefei Institute of Physical Science, it began operations in 2006. It is the first tokamak to contain a deuterium plasma using superconducting niobium-titanium toroidal and poloidal magnets.
EAST has recently undergone several upgrades, notably with new plasma diagnostic tools and a doubling in the power of the plasma heating system. EAST is also acting as a testbed for the ITER fusion reactor that is currently being built in Cadarache, France.
The EAST tokamak is able to maintain a plasma in the so-called “H‐mode”. This is the high-confinement regime that modern tokamaks, including ITER, employ. It occurs when the plasma undergoes intense heating by a neutral beam and results in a sudden improvement of plasma confinement by a factor of two.
In 2017 scientists at EAST broke the 100 seconds barrier for a steady-state H-mode plasma and then in 2023 achieved a 403 seconds, a world record at the time. On Monday, EAST officials announced that they had almost tipled that time, delivering H-mode operation for 1066 seconds.
ASIPP director Song Yuntao notes that the new record is “monumental” and represents a “critical step” toward realizing a functional fusion reactor. “A fusion device must achieve stable operation at high efficiency for thousands of seconds to enable the self-sustaining circulation of plasma,” he says, “which is essential for the continuous power generation of future fusion plants”.
A novel fusion device based at the University of Seville in Spain has achieved its first plasma. The SMall Aspect Ratio Tokamak (SMART) is a spherical tokamak that can operate with a “negative triangularity” – the first spherical tokamak specifically designed to do so. Work performed on the machine could be useful when designing compact fusion power plants based on spherical tokamak technology.
SMART has been constructed by the University of Seville’s Plasma Science and Fusion Technology Laboratory. With a vessel dimension of 1.6 × 1.6 m, SMART has a 30 cm diameter solenoid wrapped around 12 toroidal field coils while eight poloidal field coils are used to shape the plasma.
Triangularity refers to the shape of the plasma relative to the tokamak. The cross section of the plasma in a tokamak is typically shaped like a “D”. When the straight part of the D faces the centre of the tokamak, it is said to have positive triangularity. When the curved part of the plasma faces the centre, however, the plasma has negative triangularity.
It is thought that negative triangularity configurations can better suppress plasma instabilities that expel particles and energy from the plasma, helping to prevent damage to the tokamak wall.
Last year, researchers at the University of Seville began to prepare the tokamak’s inner walls for a high pressure plasma by heating argon gas with microwaves. When those tests were successful, engineers then worked toward producing the first plasma.
“This is an important achievement for the entire team as we are now entering the operational phase,” notes SMART principal investigator Manuel García Muñoz. “The SMART approach is a potential game changer with attractive fusion performance and power handling for future compact fusion reactors. We have exciting times ahead.”
Exocomets are boulders of rock and ice, at least 1 km in size, that exist outside our solar system. Exocometary belts – regions containing many such icy bodies – are found in at least 20% of planetary systems. When the exocomets within these belts smash together they can also produce small pebbles.
The belts in the latest study orbit 74 nearby stars that cover a range of ages – from those that are have just formed to those in more mature systems like our own Solar System. The belts typically lie tens to hundreds of astronomical units (the distance from the Earth to the Sun) from their central star.
At that distance, the temperature is between -250 to -150 degrees Celsius, meaning that most compounds on the exocomets are frozen as ice.
While most exocometary belts in the latest study are disks, some are narrow rings. Some even have multiple rings/disks that are eccentric, which provides evidence that yet undetectable planets are present and their gravity affects the distribution of the pebbles in these systems.
According the Sebastián Marino from the University of Exeter, the images reveal “a remarkable diversity in the structure” of the belts.
Indeed, Luca Matrà from Trinity College Dublin says that the “power” of such a large survey is to reveal population-wide properties and trends. “[The survey] confirmed that the number of pebbles decreases for older planetary systems as belts run out of larger exocomets smashing together, but showed for the first time that this decrease in pebbles is faster if the belt is closer to the central star,” Matrà adds. “It also indirectly showed – through the belts’ vertical thickness – that unobservable objects as large as 140 km to Moon-size are likely present in these belts.”
Increased collaboration between different areas of materials research and development will be needed if the UK is to remain a leader in the field. That is according to the National Materials Innovation Strategy, which claims to be the first document aimed at boosting materials-based innovation in the UK. Failing to adopt a “clear, national strategy” for materials will hamper the UK’s ability to meet its net-zero and other sustainability goals, the strategy says.
Led by the Henry Royce Institute – the UK’s national institute for advanced materials – the strategy included the input of over 2000 experts in materials science, engineering, innovation, policy and industry. It says that some 52 000 people in the UK work or contribute to the materials industry, adding about £4.4bn to the UK economy each year. Of the 2700 companies in materials innovation in the UK, 70% are registered outside of London and the South East, with 90% being small and medium-sized enterprises.
According to the 160-page strategy, materials innovation touches “almost every strategically important sector in the UK” and points to “six areas of opportunity” where materials can have an impact. They are: energy; healthcare; structural innovations; surface technologies; electronics, telecommunications and sensors; and consumer products, packaging and specialist polymers.
The strategy, which is the first phase of an effort to speed up materials development in the UK, calls for a more collaborative effort between different fields to help spur materials innovation that has “traditionally been siloed across sectors”. It claims that every materials-related job results in 12 additional jobs within “materials innovation business”, adding that “a commitment to materials innovation” by the UK could double the number of materials-specific roles by 2035.
“Advanced materials hold the key to finding and delivering solutions to some of the most pressing national and global challenges of today and directly contribute billions to our national economy,” says materials engineer David Knowles, who is chief executive of the Henry Royce Institute. “But to unlock the full value of materials we must break down traditional long-standing silos within the industry. This strategy has kickstarted that process.”
NASA has confirmed that its Parker Solar Probe has survived its record-breaking closest approach to the solar surface. The incident occurred on 24 December where it flew some 6.1 million kilometres above the surface of the Sun – well within the orbit of Mercury. A “beacon tone” that was received on 26 December with further telemetry taken on 1 January confirmed that the spacecraft not only survived but also executed the commands that had been pre-programmed into its flight computers before the flyby.
The Parker Solar Probe – named after physicist Eugene Parker who was born in 1927 and made several breakthroughs of our understanding of the solar wind and also explained why the Sun’s corona is hotter than its surface – was launched in 2018 from NASA’s Kennedy Space Center in Florida.
The mission carries four instruments including magnetometers, an imager and two dedicated particle analysers. To withstand the intense temperatures, which can reach almost 1400°C, the spacecraft and instruments are protected by a 11.4 cm carbon-composite shield.
During the mission’s seven-year lifespan, it will perform 24 orbits around the Sun with the next close solar passes occurring on 22 March and 19 June. Data transmission from the first pass in December will begin later this month when the spacecraft and its most powerful onboard antenna are in better alignment with Earth to transmit at higher data rates.
“Flying this close to the Sun is a historic moment in humanity’s first mission to a star,” notes Nicky Fox, head of the Science Mission Directorate at NASA headquarters in Washington. “By studying the Sun up close, we can better understand its impacts throughout our solar system, including on the technology we use daily on Earth and in space, as well as learn about the workings of stars across the universe to aid in our search for habitable worlds beyond our home planet.”
Engineers have successfully integrated key parts of NASA’s $4bn Nancy Grace Roman Space Telescope marking a significant step towards completion. The space agency has announced that the mission’s payload, which includes the telescope, two instruments and the instrument carrier, has been combined with the spacecraft that will deliver the observatory to its place in space at Lagrangian point L2.
Since then, however, the telescope has had a difficult existence. In Donald Trump’s first term as US president it was twice given zero funding only for US Congress to reinstate its budget.
Roman will be the most stable large telescope ever built, at least 10 times more so than NASA’s James Webb Space Telescope.
NASA’s Nancy Grace Roman Space Telescope (courtesy: NASA/Chris Gunn)
The telescope’s primary instrument is the Wide Field Instrument, a 300-megapixel infrared camera that will give it a deep, panoramic view of the universe. This will be used to study exoplanets, stars, galaxies and black holes with Roman able to image large areas of the sky 1000 times faster than Hubble with the same sharp, sensitive image quality.
The next steps for the telescope involve installing its solar panels, aperture cover – that shields the telescope from unwanted light – as well as a “outer barrel assembly” that serves as the telescope’s exoskeleton. The Roman mission should be complete next year with a launch before May 2027.
“With this incredible milestone, Roman remains on track for launch, and we’re a big step closer to unveiling the cosmos as never before,” notes Mark Clampin, acting deputy associate administrator for the Science Mission Directorate at NASA.
From squirting cucumbers to cosmic stamps, physics has had its fair share of quirky stories this year. Here is our pick of the best 10, not in any particular order.
Escape from quantum physics
Staff at the clunkily titled Dresden-Würzburg Cluster of Excellence for Complexity and Topology in Quantum Matter (ct.qmat) had already created a mobile phone app “escape room” to teach children about quantum mechanics. But this year the app became reality at Dresden’s science museum. Billed as “Germany’s first quantum physics escape room”, the Kitty Q Escape Room has four separate rooms and 17 puzzles that offer visitors a multisensory experience that explores the quirky world of quantum mechanics. The goal for participants is to discover if Kitty Q – an imaginary being that embodies the spirit of Schrödinger’s cat – is dead or alive. Billed as being “perfect for family outings, children’s birthday parties and school field trips”, the escape room “embraces modern gamification techniques”, according to ct.qmat physicist Matthias Vojuta, “We ensure that learning happens in an engaging and subtle way,” he says. “The best part [is] you don’t need to be a maths or physics expert to enjoy the game.
Corking research
Coffee might be the drink of choice for physicists, but when it comes to studying the fascinating physics of liquids, champagne is hard to beat. That’s mostly because of the huge pressures inside the bottle and the explosion of bubbles that are released once the cork is removed. Experiments have already examined the expanding gas jet that propels the cork stopper out of a just-opened bottle caused by the radiation of shock waves up the neck. Now physicists in Austria have looked at the theory of how these supersonic waves move. The “Mach disc” that forms just outside the bottle opening is, they found, convex and travels away from the bottle opening before moving back towards it. A second Mach disc then forms when the first disc moves back although it’s not clear if this splits from the first or is a distinct disc. Measuring the distance of the Mach disc from the bottle also provides a way to determine the gas pressure or temperature in the champagne bottle.
Cosmic stamps
We love a good physics or astronomy stamp here at Physics World and this year’s offering from the US Postal Service didn’t disappoint. In January, they released two stamps to mark the success of NASA’s James Webb Space Telescope (JWST), which took off in 2021. The first features an image taken by the JWST’s Near-Infrared Camera of the “Cosmic Cliffs” in the Carina Nebula, located about 7600 light-years from Earth. The other stamp has an image of the iconic Pillars of Creation within the vast Eagle Nebula, which lies 6500 light-years away that was captured by the JWST’s Mid-Infrared Instrument. “With these stamps, people across the country can have their own snapshot of Webb’s captivating images at their fingertips,” noted NASA’s head of science, the British-born physicist Nicola Fox.
Record-breaking cicadas
This year marked the first time in more than 200 years that two broods belonging to two species of cicadas emerged at the same time. And the cacophony that the insects are famous for wasn’t the only aspect to watch out for. Researchers at Georgia Tech in the US examined another strange aspect of these creatures – how they wee. We know that most insects urinate via droplets as this is more energy efficient than emitting a stream of liquid. But cicadas are such voracious eaters of tree sap that individually flicking each drop away would be too taxing. To get around this problem, cicadas (just as we do) eject the pee via a jet, which the Georgia Tech scientists looked at for the first time. “Previously, it was understood that if a small animal wants to eject jets of water, then this [is] challenging, because the animal expends more energy to force the fluid’s exit at a higher speed,” says Elio Challita, who is based at Harvard University. “This is due to surface tension and viscous forces. But a larger animal can rely on gravity and inertial forces to pee.” According to the team, cicadas are the smallest animal to create such high-speed jets – a finding that could, say the researchers, lead to the design of better nozzles and robots.
Ale in a day’s work Researchers conduct a beer-tasting session at the University of Leuven in Belgium. (Courtesy: Justin Jin)
Raising the bar
Machine learning was a big topic this year thanks to the 2024 Nobel prizes for both physics and chemistry. Not to be outdone, scientists from Belgium announced they had used machine-learning algorithms to predict the taste and quality of beer and what compounds brewers could use to improve the flavour of certain tipples. Kevin Verstrepen from KU Leuven and colleagues spent five years characterizing over 200 chemical properties from 250 Belgian commercial beers across 22 different styles, such as Blond and Tripel beers. They also gathered tasting notes from a panel of 15 people and from the RateBeer online beer review database. A machine-learning model that was trained on the data could predict the flavour and score of the beers using just the beverages’ chemical profile. By adding certain aromas predicted by the model, the team was even able to boost the quality – as determined by blind tasting – of existing commercial Belgian ale. The scientists hope the findings could be used to improve alcohol-free beer. Yet KU Leuven researcher Michiel Scheurs admits that they did celebrate the work “with the alcohol-containing variants”.
Beetling away
Whirligig beetles can reach speeds of up to 1m/s – or 100 body lengths per second – as they skirt across the water. Scientists thought the animals did this using their oar-like hind legs to generate “drag-based” thrust, a bit like how a rodent swims. To do so, however, the beetle would need to move its legs faster than its swimming speed, which in turn would require pushing against the water at unrealistic speeds. To solve this bugging problem, researchers at Cornell University used high-speed cameras to film the whirligigs as they swam. They found that the beetles instead use lift-based thrust, which has been documented in whales, dolphins and sea lions. The thrusting motion is perpendicular to the water surface and the researchers calculate that the forces generated by the beetle in this way can explain their speedy movements in the water. According to Cornell’s Yukun Sun, that makes whirligig beetles “by far the smallest organism to use lift-based thrust for swimming”.
Tough nut to crack: Pistachios come in different shapes and sizes with the shells being non-symmetric. (Courtesy: Shutterstock/everydayplus)
Pistachio packing problem
It sounds like a question you might get in an exam: if you have a full bowl of N pistachios, what size container do you need for the leftover 2N non-edible shells? Given that pistachios come in different shapes and sizes and the shells are non-symmetric, the problem’s a tougher nut to crack than you might think. Thankfully, the secret of pistachio-packing was revealed in a series of experiments by physicists Ruben Zakine and Michael Benzaquen from École Polytechnique in Palaiseau, France. After placing 613 pistachios in a two-litre cylinder, they found that the container holding the shells needs to be just over half the size of the original pistachio bowl for well-packed nuts and three-quarters for loosely packed pistachios. Zakine and Benzaquen say that numerical simulations could be carried out to compare with the experimental findings and that the work extends beyond just nuts. “Our analysis can be relevant in other situations, for instance to determine the optimal container needed [for] mussel or oyster shells after a Pantagruelian seafood diner,” they claim
The physics of paper cuts
If you’ve ever been on the receiving end of a paper cut, you’ll know how painful it can be. To find out why paper is able to slice through skin so well, Kaare Jensen – a physicist from the Technical University of Denmark – and colleagues carried out a series of experiments using paper with a range of thicknesses to make incisions into a piece of gelatine at various angles. When combined with modelling, they discovered that paper cuts are a competition between slicing and “buckling”. Thin paper with a thickness of about 30microns doesn’t cut skin so well because it buckles – a mechanical instability that happens when a slender object like paper is compressed. But thick paper (above about 200microns) is poor at making an incision because it distributes the load over a greater area, resulting in only small indentations. The team discovered, however, that there is a paper cut “sweet spot” at around 65microns, which just happens to be close to the paper thickness used in print magazines. The researchers have now put their findings to use, creating a 3D-printed scalpel that uses scrap paper for the cutting edge. Dubbed a “papermachete”, it can slice through apple, banana peel, cucumber and even chicken. “Studying the physics of paper cuts has revealed a surprising potential use for paper in the digital age: not as a means of information dissemination and storage, but rather as a tool of destruction,” the researchers write.
Quick fire round: just before launch the fruit of the squirting cucumber rotates from bring vertical to close to an angle of 45 degrees, improving the launch angle for the seeds (courtesy: Derek Moulton).
Squirting cucumbers
The plant kingdom is full of intriguing ways to distribute seeds such as the dandelion pappus effortlessly, drifting on air currents. Not to be outdone, the squirting cucumber (Ecballium elaterium), which is native to the Mediterranean and is often regarded as a weed, has its own unique way of ejecting seeds. When ripe, the ovoid-shaped fruits detach from the stem and as it does so explosively ejects seeds in a high-pressure jet of mucilage. The process, which lasts just 30 ms, launches the seeds at more than 20 m/s with some landing 10 m away. Researchers in the UK revealed the mechanism behind the squirt for the first time by using high-speed imaging and mathematical modelling. The researchers found that in the weeks leading up to the ejection, fluid builds up inside the fruits so they become pressurized. Then just before seed dispersal, some of this fluid moves from the fruit to the stem, making it longer and stiffer. This process crucially causes the fruit to rotate from being vertical to close to an angle of 45°, improving the launch angle for the seeds. During the first milliseconds of ejection, the tip of the stem holding the fruit then recoils away causing the pod to counter-rotate and detach. As it does so, the pressure inside the fruit causes the seeds to eject at high speed. By changing parameters in the model, such as the stiffness of the stem, reveals that the mechanism has been fine-tuned to ensure optimal seed dispersal.
Chimp Shakespeare
And finally, according to the infinite monkeys theorem, a monkey randomly pressing keys on a typewriter for an infinite amount of time would eventually type out the complete works of William Shakespeare purely by chance. Yet analysis by two mathematicians in Australia found that even a troop might not have time to do so within the supposed timeframe of the universe. The researchers came to their conclusion after creating a computational model that assumed a constant chimpanzee population of 200 000, each typing at one key per second until the end of the universe in about 10100 years. If that is true, there’d be only a 5% chance a single monkey would type “bananas” within its own lifetime of just over 30 years. But even all the chimps feverishly typing away couldn’t produce Shakespeare’s entire works (coming in at over 850 000 words) before the universe ends. “It is not plausible that, even with improved typing speeds or an increase in chimpanzee populations, monkey labour will ever be a viable tool for developing non-trivial written works,” the authors conclude, adding that while the infinite monkeys theorem is true, it is also “somewhat misleading”, or in reality it’s “not to be”.
You can be sure that next year will throw up its fair share of quirky stories from the world of physics. See you next year!
The past few years have seen several missions to the Moon and that continued in 2024. Yet things didn’t get off to a perfect start. In 2023, the Japanese Space Agency, JAXA, launched its Smart Lander for Investigating Moon (SLIM) mission to the Moon. Yet when it landed in January, it did so upside down. Despite that slight mishap, Japan still became the fifth nation to successfully soft land a craft on the Moon, following the US, Soviet Union, China and India.
In February, meanwhile, US firm Intuitive Machines achieved a significant milestone when it became the first private mission to soft land on the Moon. Its Odysseus mission touched down on the Moon’s Malapert A region, a small crater about 300 km from the lunar south pole. In doing so it also became the first US mission to make a soft landing on the Moon since Apollo 17 in December 1972.
Astronomy is unique in having a significant amateur community and while radio astronomy emerged from amateur beginnings, it is now the focus of elite, international global consortia. In this fascinating feature, astrophysicist and amateur radio astronomer Emma Chapman from the University of Nottingham, UK, outlined how the subject developed and why it needs to strike a fine balance between its science and engineering roots. And also make sure not to miss Chapman discussing the history of radio astronomy on the Physics World Stories podcast.
Hidden stories
Still on the podcast front, this Physics World Stories podcast from this year features a fascinating chat with astronaut Eileen Collins, who shared her extraordinary journey as the first woman to pilot and command a spacecraft. In the process, she broke several barriers in space exploration and inspired generations with her courage and commitment to discovery.
Star power: This spectacular image taken by Euclid shows Messier 78 – a nursery of star formation that is enveloped in a shroud of interstellar dust – that lies 1300 light-years away in the constellation of Orion
Euclid’s spectacular images
Astronomy and spectacular images go hand in hand and this year didn’t disappoint. While the James Webb Space Telescope continued to amaze, in May the European Space Agency released five spectacular images of the cosmos along with 10 scientific papers as part of Euclid’s early release observations. Euclid’s next data release will focus on its primary science objectives and is currently slated for March 2025, so keep an eye out for those next year.