Le capitaine Filimonov, figure de proue de la résistance ukrainienne dans le Donbass

© ADRIEN VAUTIER / LE PICTORIUM POUR « LE MONDE »

© ADRIEN VAUTIER / LE PICTORIUM POUR « LE MONDE »
Attention, les paragraphes qui suivent contiennent des spoilers sur l'épisode de Demain nous appartient diffusé demain soir sur TF1 ! Si vous préférez ne rien savoir, ne lisez pas la suite.
Mardi 25 novembre dans Demain nous appartient...
Après avoir passé la nuit chez Bar…
Article original publié sur AlloCiné

© Aaron P. Bernstein / REUTERS
Comme Ben Stiller, Jean-Pierre Castaldi, Samuel L. Jackson ou encore André Dussollier, le célèbre acteur français Daniel Prévost avait eu affaire, aux alentours des années 90, à un énergumène des plus singuliers.
En effet, à l'instar de nombreuses autres personnalités du cinéma, de la c…
Article original publié sur AlloCiné
Attention, les paragraphes qui suivent contiennent des spoilers sur l'épisode d’Ici tout commence diffusé demain soir sur TF1 ! Si vous préférez ne rien savoir, passez votre chemin.
Mardi 25 novembre dans Ici tout commence...
À la coloc des marais, Pénélope fait p…
Article original publié sur AlloCiné

Des décennies après leur première union dans Les Feux de l'amour, deux personnages phares de la fiction américaine diffusée par TF1 se remarient ! Il s'agit de Christine (alias Cricket) et Danny, respectivement incarnés depuis toujours par Lauralee Bell et Michael Damian.
Article original publié sur AlloCiné
Vous pensiez que les IA génératives se contentaient de pondre des images de chats à 6 pattes façon Ghibli et des textes pompés sur Wikipédia ? Hé bien, je vais vous décevoir car des chercheurs de l’Arc Institute, Stanford, NVIDIA, UC Berkeley et d’autres viennent de pousser le concept beaucoup, beaucoup plus loin…
En effet, ils ont créé Evo 2, le plus grand modèle d’IA pour la biologie jamais rendu public, capable de lire, comprendre et même écrire de l’ADN fonctionnel. Et cerise sur le gâteau, une étude publiée cette semaine dans Nature démontre qu’on peut utiliser cette technologie pour créer des protéines totalement nouvelles qui n’ont jamais existé dans la nature… et qui fonctionnent vraiment !
Le projet Evo 2 fonctionne comme un LLM classique, sauf qu’au lieu de lui faire bouffer du texte, on lui a fait avaler 9,3 trillions de nucléotides (les fameux A, T, G, C qui composent l’ADN) provenant de plus de 128 000 génomes couvrant tous les domaines du vivant : bactéries, archées, virus, mais aussi humains, plantes et autres eucaryotes.
Leur modèle existe en deux versions : 7 milliards et 40 milliards de paramètres (comparable aux gros LLM actuels) mais sa vraie force, c’est sa fenêtre de contexte d’un million de paires de bases, soit 8 fois plus que son prédécesseur Evo 1. Pour vous donner une idée, c’est suffisant pour analyser un chromosome entier de levure ou un génome bactérien complet en une seule passe.
Pour entraîner ce monstre, il a fallu mobiliser plus de 2 000 GPU NVIDIA H100 pendant plusieurs mois sur le cloud DGX, soit environ 150 fois plus de puissance de calcul qu’AlphaFold. L’architecture utilisée, baptisée StripedHyena 2 , permet un entraînement 3 fois plus rapide que les transformers classiques sur les longues séquences et petit fun fact, Greg Brockman, cofondateur d’OpenAI, a participé au développement de cette architecture pendant son année sabbatique.
L’une des applications les plus impressionnantes d’Evo 2, c’est sa capacité à prédire si une mutation génétique risque de causer une maladie, et ce, sans aucun entraînement spécifique. Les chercheurs ont testé le modèle sur le gène BRCA1, connu pour son lien avec le cancer du sein. Résultat, Evo 2 a prédit avec plus de 90% de précision quelles mutations étaient pathogènes et lesquelles étaient bénignes.
Mieux encore, Evo 2 est actuellement le seul modèle capable de prédire l’effet des mutations dans les régions non-codantes de l’ADN (les fameuses parties qu’on pensait “inutiles” et qu’on appelait autrefois “ADN poubelle”). Pour les variants codants, il est second meilleur, mais pour les variants non-codants, il est carrément le top du top of the pop !
Et pour prouver que le modèle ne fait pas que régurgiter ses données d’entraînement, l’équipe lui a demandé d’annoter le génome du mammouth laineux, une espèce qui n’était évidemment pas dans son dataset. Et le modèle a correctement identifié la structure exons-introns du génome de ce pachyderme (aujourd’hui disparu parce que j’ai mangé le dernier), démontrant qu’il a vraiment “compris” les règles fondamentales du vivant.
Mais là où ça devient vraiment dingue, c’est ce concept de “design sémantique”. En effet, dans les génomes bactériens, les gènes qui travaillent ensemble sont souvent positionnés côte à côte, du coup, si on donne à l’IA le contexte génomique d’une fonction particulière, elle peut générer de nouveaux gènes ayant des fonctions similaires.
En gros, on prompte l’IA avec de l’ADN au lieu de texte, et comme un bon LLM qui complète vos phrases, Evo complète… vos génomes.
Pour tester cette approche, les chercheurs ont d’abord généré une toxine bactérienne basée sur une toxine connue. Ils ont ensuite utilisé cette toxine comme “prompt” pour demander à l’IA de créer des antitoxines correspondantes. Sur 10 propositions, la moitié ont réussi à neutraliser partiellement la toxine, et deux d’entre elles l’ont complètement désactivée avec 95-100% de survie cellulaire.
Et ces antitoxines n’avaient que 21 à 27% de similarité avec les protéines existantes, donc autant dire qu’Evo a inventé quelque chose de quasi-nouveau ! Et ce n’est pas du bricolage aléatoire puisque l’analyse montre que ces protéines seraient l’équivalent d’un assemblage de 15 à 20 morceaux de protéines différentes, recombinés de façon inédite.
Et ce qui est encore plus impressionnant, c’est que certaines de ces antitoxines générées fonctionnent contre plusieurs toxines différentes utilisant des mécanismes d’action distincts. L’une d’elles neutralise trois toxines naturelles, alors que l’antitoxine naturelle équivalente ne fonctionne que contre sa toxine d’origine. L’IA aurait donc identifié une compatibilité fonctionnelle plus large que ce qu’on observe dans la nature !
Les chercheurs ont aussi testé des systèmes où l’antitoxine est un ARN plutôt qu’une protéine. Là encore, le modèle a généré une antitoxine fonctionnelle avec 88% de survie, tout en conservant les caractéristiques structurelles essentielles malgré une séquence divergente.
Mais surtout, l’équipe a généré une toxine qui ne ressemble à absolument rien de connu. Aucune similarité de séquence, aucune similarité structurale, même avec les méthodes de détection les plus sensibles. Pour reconstituer tous les acides aminés de cette protéine, il faudrait recombiner des fragments de plus de 40 protéines différentes, ce qui ressemble plus à une protéine Frankenstein créée de toutes pièces qu’à une variation évolutive.
Et histoire de pousser l’idée encore plus loin, l’équipe s’est attaquée aux anti-CRISPR. Ce sont des protéines utilisées par les phages pour désactiver le système immunitaire bactérien, qui sont parmi les plus évolutives qui existent, avec une diversité de séquences et de mécanismes absolument folle.
Et 17% des protéines générées ont montré une activité anti-CRISPR mesurable, soit un taux de succès remarquable. Parmi les candidates qui fonctionnent, certaines n’ont aucune similarité de séquence détectable avec les protéines connues, et même leurs structures prédites ne ressemblent à rien dans les bases de données. Ce sont littéralement des protéines nouvelles qui font le job !
Mais Evo 2 ne s’arrête pas à la génération de protéines individuelles. Le modèle peut maintenant créer des séquences génomiques complètes de plusieurs centaines de milliers de paires de bases. L’équipe a testé trois niveaux de complexité :
Les chercheurs ont même encodé des messages en code Morse (“EVO2”, “LO”) dans les profils d’accessibilité de la chromatine des séquences générées, démontrant qu’on peut “programmer” l’épigénome avec ce modèle.
On nage en pleine science-fiction, mais ça fonctionne !
Pour finir en beauté, l’équipe a lâché Evo sur 1,7 million de gènes bactériens et viraux comme prompts, générant 120 milliards de paires de bases d’ADN synthétique. Cette base de données, baptisée SynGenome , est accessible gratuitement et permet de rechercher des séquences par fonction, domaine protéique, espèce ou terme Gene Ontology.
On y trouve notamment des protéines chimériques avec des fusions de domaines jamais observées dans la nature. Ces combinaisons pourraient représenter des innovations fonctionnelles à explorer pour la biologie synthétique.
Et le plus beau dans tout ça c’est que tout est open source. Les modèles (7B et 40B paramètres) sont disponibles sur Hugging Face , le code d’entraînement et d’inférence est sur GitHub , et le dataset OpenGenome2 est téléchargeable. Vous pouvez même tester Evo 2 directement dans votre navigateur via l’ API hébergée par NVIDIA ou l’interface Evo Designer.
Pour ceux qui veulent aller plus loin, NVIDIA propose aussi des tutoriels de fine-tuning via son framework BioNeMo , et une collaboration avec le labo Goodfire a produit un outil d’interprétabilité pour visualiser ce que le modèle “voit” dans les séquences génomiques.
Bien sûr, la génération autorégressive peut produire des séquences répétitives ou des “hallucinations” biologiques (des gènes réalistes mais non fonctionnels), et c’est pourquoi ce design sémantique nécessite des filtres et des validations expérimentales. De plus, cette approche est limitée aux fonctions encodées par les relations contextuelles dans les génomes prokaryotes, ce qui exclut de nombreuses applications eucaryotes… pour l’instant.
Un des génomes bactériens générés était d’ailleurs incomplet et ne fonctionnerait probablement pas si on le synthétisait et l’insérait dans une vraie bactérie. Mais l’équipe travaille déjà avec des experts en synthèse et assemblage d’ADN de l’Université du Maryland pour tester expérimentalement ces génomes générés.
Bref, on n’en est pas encore à créer des enzymes qui digèrent le plastique sur commande, mais le fait qu’une IA puisse générer des protéines fonctionnelles à partir de rien, juste en apprenant les patterns de l’évolution… c’est quand même complètement dingue. Et avec un taux de succès allant de 17 à 50% sur seulement quelques dizaines de variants testés, le design sémantique surpasse déjà de nombreuses méthodes classiques de conception de protéines.
Quoiqu’il en soit, la biologie générative vient de franchir un cap, et j’ai hâte de voir ce que les biologistes vont en faire !

The $330m Jiangmen Underground Neutrino Observatory (JUNO) has released its first results following the completion of the huge underground facility in August.
JUNO is located in Kaiping City, Guangdong Province, in the south of the country around 150 km west of Hong Kong.
Construction of the facility began in 2015 and was set to be complete some five years later. Yet the project suffered from serious flooding, which delayed construction.
JUNO, which is expected to run for more than 30 years, aims to study the relationship between the three types of neutrino: electron, muon and tau. Although JUNO will be able to detect neutrinos produced by supernovae as well as those from Earth, the observatory will mainly measure the energy spectrum of electron antineutrinos released by the Yangjiang and Taishan nuclear power plants, which both lie 52.5 km away.
To do this, the facility has a 80 m high and 50 m diameter experimental hall located 700 m underground. Its main feature is a 35 m radius spherical neutrino detector, containing 20,000 tonnes of liquid scintillator. When an electron antineutrino occasionally bumps into a proton in the liquid, it triggers a reaction that results in two flashes of light that are detected by the 43,000 photomultiplier tubes that observe the scintillator.
On 18 November, a paper was submitted to the arXiv preprint server concluding that the detector’s key performance indicators fully meet or surpass design expectations.
New measurement
Neutrinos oscillate from one flavour to another as they travel near the speed of light, rarely interacting with matter. This oscillation is a result of each flavour being a combination of three neutrino mass states.
Yet scientists do not know the absolute masses of the three neutrinos but can measure neutrino oscillation parameters, known as θ12, θ23 and θ13, as well as the square of the mass differences (Δm2) between two different types of neutrinos.
A second JUNO paper submitted on 18 November used data collected between 26 August and 2 November to measure the solar neutrino oscillation parameter θ12 and Δm221 with a factor of 1.6 better precision than previous experiments.
Those earlier results, which used solar neutrinos instead of reactor antineutrinos, showed a 1.5 “sigma” discrepancy with the Standard Model of particle physics. The new JUNO measurements confirmed this difference, dubbed the solar neutrino tension, but further data will be needed to prove or disprove the finding.
“Achieving such precision within only two months of operation shows that JUNO is performing exactly as designed,” says Yifang Wang from the Institute of High Energy Physics of the Chinese Academy of Sciences, who is JUNO project manager and spokesperson. “With this level of accuracy, JUNO will soon determine the neutrino mass ordering, test the three-flavour oscillation framework, and search for new physics beyond it.”
JUNO, which is an international collaboration of more than 700 scientists from 75 institutions across 17 countries including China, France, Germany, Italy, Russia, Thailand, and the US, is the second neutrino experiment in China, after the Daya Bay Reactor Neutrino Experiment. It successfully measured a key neutrino oscillation parameter called θ13 in 2012 before being closed down in 2020.
JUNO is also one of three next-generation neutrino experiments, the other two being the Hyper-Kamiokande in Japan and the Deep Underground Neutrino Experiment in the US. Both are expected to become operational later this decade.
The post Scientists in China celebrate the completion of the underground JUNO neutrino observatory appeared first on Physics World.




